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Preface 

This manual provides detailed solutions to all the end-of-chapter (b) Exercises, and to the even-numbered 

Discussion Questions and Problems. Solutions to Exercises and Problems carried over from previous 
editions have been reworked, modified, or corrected when needed. 

The solutions to the Problems in this edition rely more heavily on the mathematical and molecular 
modeling software that is now generally accessible to physical chemistry students, and this is particularly 

true for many of the new Problems which request the use of such software for their solutions. But almost 
all of the Exercises and many of the Problems can still be solved with a modern hand-held scientific 

calculator. When a quantum chemical calculation or molecular modeling process has been called for, 
we have usually provided the solution with PC Spartan Pron.1 because of its common availability. 

In general, we have adhered rigorously to the rules for significam figures in displaying the final 

answers. However, when intermediate answers are shown, they are often given with one more figure 
than would be justified by the data. These excess digits are indicated with an overline. 

We have carefully cross-checked the solutions for errors and expect that most have been eliminated. 
We would be grateful to any readers who bring any remaining errors to our attention. 

We warmly thank our publishers for their patience in guiding this complex, detailed project to 

completion. 

P. W.A. 
C. A. T. 
M.P. C. 

C.G 
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PART 1 Equilibrium 
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1 The properties of gases 

Answers to discussion questions 

01.2 The partial pressure of a gas in a mixture of gases is the pressure the gas would exert if it occupied alone 

the same container as the mixture at the same temperature. It is a limiting law because it holds exactly 

only under conditions where the gases have no effect upon each other. This can only be true in the limit 

of zero pressure where the molecules of the gas are very far apart. Hence, Dalton's law holds exactly 
only for a mixture of perfect gases; for real gases, the Jaw is only an approximation. 

01.4 The critical constants represent the state of a system at which the distinction between the liquid and 

vapor phases disappears. We usually describe this situation by saying that above the critical temperature 
the liquid phase cannot be produced by the application of pressure alone. The liquid and vapor phases 
can no longer coexist, though fluids in the so-called supercritical region have both liquid and vapor 
characteristics. (See lmpacri.4.1 for a more thorough discussion of the supercritical state.) 

01.6 The van der Waals equation is a cubic equation in the volume, V. Any cubic equation has certain 
properties, one of which is that there are some values of the coefficients of the variable where the 
number of real roots passes from three to one. In fact, any equation of state of odd degree higher than 
I can in principle account for critical behavior because for equations of odd degree in V there are 
necessarily some values of temperature and pressure for which the number of real roots of V passes 
from n (odd) to I. That is, the multiple values of V converge from 11 to 1 as T --+ Tc. This mathematical 
result is consistent with passing from a two phase region (more than one volume for a given T and p) to 
a one phase region (only one V for a given T and p and this corresponds to the observed experimental 
result as the critical point is reached. 

E1.1(b) 

Solutions to exercises 

(a) The perfect gas law is 

pV = nRT 

implying that the pressure would be 

nRT 
p=v 



E1.2(b) 

E1.3(b) 

E1.4(b) 
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All quantities on the right are given to us except n, which can be computed from the given mass 

of Ar. 

25 g 
n = = 0.626 mol 

39.95 g mol- 1 

(0.626 mol) x (8.31 x w-2 dm3 bar K- 1 mol- 1) x (30 + 273 K) I 1 
sop= 

3 
= 10.5bar 

1.5dm 

not 2.0 bar. 

(b) The van der Waals equation is 

RT a 
p = Vm- b- V,i, 

(8.31 x w-2 dm3 bar K- 1 mol- 1) x (30 + 273) K 
sop= 

( 1.53 dm3 /0.626 mol) - 3.20 x I0-2 dm3 mol 1 

(1.337dm6atm mol-2) x (1.013 baratm- 1) 1 1 
- 3 - =_10.4bar_ 

( 1.5 dm f0.626 mol)2 

(a} Boyle"s law applies: 

pV =constant so prVr =Pi vi 

and 

i = prVr = (1.97 bar) x (2.14dm
3

) = 11.07 bar 1 
p Vi (2.14 + 1.80) dm3 

(b) The original pressure in bar is 

Pi = ( 1.07 bar) x x = 1803 Torr ( 
I atm ) (760 Torr) I 

1.013 bar I atm 

The relation between pressure and temperature at constant volume can be derived from the perfect 

gas law 

pV = nRT so p ex T and 

The final pressure, then, ought to be 

Pi 

Ti 
Pr 
Tr 

= PiTr = (125 kPa) x (II+ 273) K = 
1

, 20 kPa I 
Pr Ti (23 + 273) K 

According to the perfect gas law, one can compute the amount of gas from pressure, temperature, 

and volume. Once this is done, the mass of the gas can be computed from the amount and the molar 

mass using 

pV = nRT 

pV (1.00 atm) x (1.013 x 105 Pa atm- 1) x (4.00 x 103 m3 ) 5 so n = - = = 1.66 x 10 mol 
RT (8.3145 J K 1mol 1) x (20 + 273) K 

and m = (1.66 x 105 mol) x (16.04 g mol- 1
) = 2.67 x I06g = 12.67 x 103 kg I 



E1.5(b) 

E1.6(b) 

E1.7(b) 
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Identifying Pex in the equation p = Pex + pgh [1.3] as the pressure at the top of the straw and pas the 
atmospheric pressure on the liquid, the pressure difference is 

p-p" =pgh=(l.Ox 103kgm-3) x (9.8lms-2 ) x (0.15m) 

= 11.5 X 103 Pa I(= 1.5 X 10-2 atm) 

The pressure in the apparatus is given by 

P = Potm + pgh [ 1.3] 

Potm = 760 Torr = I atm = 1.013 x 105 Pa 

( 1 kg) (I06
cm

3
) pgh = 13.55 g cm-3 x 

103 
g x m3 x 0.100 m x 9.806 m s-2 = 1.33 x 104 Pa 

p = 1.013 X 105 Pa + 1.33 X 104 Pa = 1.146 X 105 Pa = 1115 kPa I 

All gases are perfect in the limit of zero pressure. Therefore the extrapolated value of pVmJT will give 
the best value of R. 

. . m 
The molar mass IS obtamed from p V = nRT = M RT 

mRT RT 
which upon rearrangement gives M = -- = p-v p p 

The best value of M is obtained from an extrapolation of pjp versus p top= 0; the intercept isM JRT. 

Draw up the following table 

0.750 000 0.082 0014 1.428 59 
0.500 000 0.082 0227 1.428 22 
0.250 000 0.082 0414 1.427 90 

From Figure 1.1 (a), (p V m) = I 0.082 061 5 dm3 atm K- 1 mol- 1 I 
T p~o 
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Figure l.l(a) 
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From Figure 1.\(b). (I!_) = 1.427 55 g dm-3 atm- 1 

p p=O 

.. , .. ·'···I A isS 
: .. ' ~-- •' . "~ " -~. "~ 
: l I l•ts6 
; I : ! .4,28,4 
:. E ,,, -~"'·'"') 

i- ~ .t. ~-4~8~ 
i. 'I' .:.. -~···c···~ 

j: ~ i: ~.4~8~ 
j·~+-·(.477~ 

i- +·(.4~!7~ 
l• -- ·-··-······-

-~-- j .4274 
., • • . +o 

.. <- . ~- .. -:. .. -~ .. ·: .. ·: .. 
: .. : 

:.: . 
i i 

, .• ,7 
' ' i 

... ,o.,s: ...... 0.50' ..... ,o.1s:· .. ,.,,o 
···:···:···:·· ::P/.~-~r:::.· Figure l.l(b) 

M = RT (I!_) = (0.082 061 5 dm3 atm mo\- 1 K- 1) x (273.15 K) x (1.42755 g dm-3atm- 1
) 

p p=O 

= 131.9987 g moi- 1 I 

The value obtained for R deviates from the accepted value by 0.005 percent. The error results from the 
fact that only three data points are available and that a linear extrapolation was employed. The molar 

mass, however, agrees exactly with the accepted value, probably because of compensating plotting 

errors. 

The mass density p is related to the molar volume Vm by 

M 
Vm =-

p 

where M is the molar mass. Putting this relation inLO the perfect gas law yields 

pVm = RT so 
pM 
-=RT 

p 

Rearranging this result gives an expression forM; once we know the molar mass, we can divide by the 

molar mass of phosphorus atoms to determine the number of atoms per gas molecule 

RT p (8.3\4 Pa m3 mol-l) x [(100 + 273) K] x (0.6388 kg m-3 ) 
M = -p- = .:..:.:c..c...c..:..:::..:::._.:::.::_:__:__c.,\,..60'0~x=--;.10:;'4;-:,P;':-ac.:..:.c.:..:._:_:_:=:.::..::=:___c_ 

=0.124kgmol- 1 = 124gmoi- 1 

The number of atoms per molecule is 

124g mol- 1 

31.0 g mol 1 
= 4.00 

suggesting a formula of~ 
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Use the perfect gas equation to compute the amount; then convert to mass. 

pV 
pV=nRT so n=

RT 

We need the partial pressure of water, which is 53 percent of the equilibrium vapor pressure at the given 

temperature and standard pressure. 

p = (0.53) x (2.69 x 103 Pa) = 1.43 x 103 Pa 

(1.43 x 103 Pa) x (250m3) - , 
so n = = 1.45 x 10- mol 

(8.3145 1 K 1 mol 1
) X (23 + 273) K 

or 111 = (1.45 x 102 mol) x (18.0 g mol- 1
) = 2.6T x 103 g = 12.61 kg I 

E1.10(b) (a) The volume occupied by each gas is the same, since each completely fills the container. Thus solving 

for V we have (assuming a perfect gas) 

n1RT 0.225 g 
V = -- liNe = ----"'--,-

PJ 20.18 g mol 1 

= I. liS X w-2 mol, PN' = 8.87 kPa, T = 300 K 

(I.IIS X w- 2 mol) X (8.314dm3 kPaK-I mol- 1) X 300K) - 3 
V= =3.137dm· 

8.87 kPa 

(b) The total pressure is determined from the total amount of gas, 11 = HCH~ +liAr+ liNe· 

0.320 g - 'J 0.175 g J 
IICH, = -,---,--,--"-,--,-

1 
= 1.995 X JO--mol liM= c:-::-.,-:c--"-:-;-

1 
= 4.38 X 10-- mol 

16.04 g mol 39.95 g mol 

ll = ( 1.995 + 0.438 + I. liS) X w-2mol = 3.548 X w-2mol 

nRT (3.548 X w-2 mol) X (8.314 dm 3 kPa K- 1 mol- 1
) X (300 K) 

"=v[I.8l= 3.IJ7dm3 

= 128.2 kPa I 

E1.11(b) This is similar to Exercise l.ll(a) with the exception that the density is first calculated. 

RT 
M = p- [Exercise 1.8(a)] 

I' 
33.5 mg - _1 p= 1 =0.1340gdm ·• p= 152Torr, T=298K 
250cm· 

(0.1340gdm-3
) x (62.36dm3 TorrK- 1 mol- 1

) x (298K) I -II 
M= = 16.14gmol 

152 Torr 

E1.12{b) This exercise is similar to Exercise 1.12(a) in that it uses the definition of absolute zero as that temperature 

at which the volume of a sample of gas would become zero if the substance remained a gas at low 
temperatures. The solution uses the experimental fact that the volume is a linear function of the Celsius 

temperature. 
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Thus V = Vo + aVo8 = Vo + b8, b =aVo 

At absolute zero, v = 0, orO= 20.00dm3 + 0.0741 dm3 oc-I X 8(abs. zero) 

8(abs. zero)= 20.00 dm
3 

= 1-270 "C I 
0.0741 dm3 "C 1 

which is close to the accepted value of-273 °C. 

nRT 
E1.13(b) (a) p=v 

11 = 1.0 mol 

T = (i) 273.15 K; (ii) 500 K 

V = (i) 22.414dm3; (ii) 150cm3 

(i) 
(I.Omol) x (8.206 x I0-2 ctm3 atmK- 1 mol- 1) x (273.15K) 

P = 22.414dm3 

= 11.0 atm I 

( 1.0 mol) x (8.206 x 10-2 dm3 atm K- 1 mol- 1
) x (500 K) 

p= 0.150dm3 
(ii) 

= 1270 atm I (2 significant figures) 

(b) From Table (1.6) for H2S 

(i) 

(ii) 

a= 4.484dm6 atm mol-l 

nRT an2 

p = V -nb- V1 

(1.0 mol) x (8.206 x 10-2 dm3 atm K- 1 mol- 1) x (273.15 K) 
p-

- 22.414dm3 - (1.0 mol) x (4.34 x 10 2 ctm3 mol 1) 

(4.484 dm6 atm mol- 1) x (1.0 mol)2 

(22.414 dm3)' 

=I 0.99 atm I 

(I.Omol) x (8.206 x I0-2 dm3 atm K- 1 mol- 1) x (500K) 
p-

- 0.150dm3 - (I.Omol) x (4.34 x 10 2 dm3 mol 1) 

(4.484 dm6atm mol-') x (1.0 mol)2 

(0.150dm3)2 

= 185.6atm "'1190 atm I (2 significant figures). 

E1.14(b) The conversions needed are as follows: 

I atm = 1.013 x 105 Pa; I Pa =I kg m- 1 s-2 ; I dm6 = 10-6 m6 ; I dm3 =10-3 m3 
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Therefore, 

a = 1.32 atm dm6 mol-2 becomes, after substitution of the conversions 

a= f1.34 x 10- 1 kg m5s-2mol-2 f, and 

b = 0.0436 dm3 mol- 1 becomes 

b = f4.36 x 10-5 m3mol- 1 f 

E1.15(b) The compression factor is 

Z= pVm = Vm 
RT VZ 

(a) Because v m = v::a + 0.12 vz = ( 1.12) vz. we have z = [Iill I Repulsive I forces dominate. 

(b) The molar volume is 

V = (1.12)V~ = (1.12) x (R;) 

(
(0.08206dm3atmK- 1 mol- 1

) x (3SOK)) 1 3 'I 
V = (1.12) x = 2.7 dm mol- . 

12atm 

E1.16(b) (a) 0 RT (8.314JK- 1 mol- 1) x (298.15K) v = - = .;__---.,.,-------,-;---'--.--'-
m p (200bar)x(I05Pabar 1) 

= 1.24 x 10-4 m3 mol- 1 =I 0.124 dm3 mol- 1 I 
(b) The van der Waals equation is a cubic equation in Vm. The most direct way of obtaining the molar 

volume would be to solve the cubic analytically. However, this approach is cumbersome, so we 

proceed as in Example 1.4. The van der Waals equation is rearranged to the cubic form 

with X= Vmf(dm3 mol- 1). 

The coefficients in the equation are evaluated as 

RT 2 3 1 (8.206 x 10-2 dm3 mol- 1) x (298.15 K) 
b + - = (3.183 x 10- dm mol- ) + .:..:.__:__=:-:---:-----::-::-:-:-_:._-::-'-_:__;--'-_.:_ 

P (200 bar) x (1.013 atm bar 1) 

= (3.183 x 10-2 + 0.1208) dm3 mol- 1 = 0.1526 dm3mol- 1 

a 1.360 dm6 atm mol-2 3 3 1 2 = = 6.71 x 10- (dm mol- ) 
P (200bar) x (1.013atmbar 1) 

ab 

p 

(1.360dm6 atmmol-2)x(3.183xl0-2dm3 mol- 1) - 4 3 13 .:.._ ______ .:.._--'-------.------'- = 2.137 x 10- (dm mol- ) 
(200 bar) x ( 1.013 atm bar 1) 

Thus, the equation to be solved is x3 - 0.1526x2 + (6.71 x 10-3)x- (2.137 x 10-4) = 0. 
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Calculators and computer software for the solution of polynomials are readily available. In this case 

we find 

x = 0.112 or Vm = \ 0.112 dm3 mol-l \ 

The difference is about 15 percent. 

E1.17(b) The molar volume is obtained by solving Z = pV,.,jRT [ 1.17], for Vm. which yields 

ZRT (0.86)x(0.08206dm3 atmK- 1 mol- 1)x(300K) - 3 _ 1 V, = -- = = 1.059 dm mol 
p 20atm 

(a) Then, v = nVm = (8.2 X w-3 mol) X ( 1.059 dm3 mol-l) = 8.7 X w-3 dm3 = 18.7 cm3 1 

(b) An approximate value of B can be obtained from eqn 1.19 by truncation of the series expansion after 

the second term, BfVm. in the series. Then, 

B=Vmc:;-I)=Vmx(Z-1) 

= (1.059dm3 mol- 1) x (0.86- I)= 1-0.15 dm3mol- 1 I 

E1.18(b) (a) Mole fractions are 

- ~- 2.5mol -10631 .tN- - - . 
lltotal (2.5 + 1.5) mol 

Similarly, XH =I 0.371 

(b) According to the perfect gas law 

Ptoml V = lltota\RT 

lltotatRT 
so Ptoml = --V-

( 4.0 mol) x (0.08206 dm3 atm mol-l K- 1) x (273.15 K) I I 
= 3 = 4.0 atm 

22.4dm 

(c) The partial pressures are 

PN = XNPtm = (0.63) x (4.0 atm) = 12.5 atm I 

and PH = (0.37) x (4.0 atm) = 11.5 atm I 

E1.19(b) The critical volume of a van der Waals gas is 

v, = 3b 

sob= tv,= t<I48cm3 mol- 1) = 49.3cm3 mol- 1 =I 0.0493 dm3 mol- 1 I 

By interpreting bas the excluded volume of a mole of spherical molecules, we can obtain an estimate 

of molecular size. The centers of spherical particles are excluded from a sphere whose radius is the 
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diameter of those spherical particles (i.e. twice their radius); that volume times the Avogadro constant 
is the molar excluded volume b 

b = NA (4rr(2r)3) so r = ~ (_]!:____) 1/3 
3 2 4rrNA 

( )

10 
I 3(49.3cm3 moi- 1) 

r =- = 1.94 x 10-8 cm = 11.94 x 10-IO m I 
2 4rr(6.022 X I o" mol I) 

The critical pressure is 

a 
p, = 27b2 

so a = 21p,b2 = 27(48.20 atm) x (0.0493 dm 3 mol- 1 
) 2 = 13.16 dm6 atm mol-2 1 

But this problem is overdetermined. We have another piece of information 

8a 
7: = --

' 27Rb 

According to the constants we have already determined, Tc should be 

8(3.16 dm6 atm mol-2) 

T, = 27(0.08206 dm3 atm K 1 mol 1) x (0.0493 dm3 mol 1) = 
231 

K 

However, the reported Tc is 305.4 K, suggesting our computed af b is about 25 percent lower than it 
should be. 

E1.20(b) (a) The Boyle temperature is the temperature at which limvm--+codZ/(d(I/Vm)) vanishes. According 
to the van der Waals equation 

z = p_V_,_n = ~(,_v-'""-~-~-b--,--=-v-"aJa"')'--v-m = _v_,_, __ _ a_ 
RT RT Vm -b VmRT 

so dZ ( dZ ) ( dVm ) 
d(IfVm) = dVm X d(IjV,) 

= -V~ u:J = -v;, Cv,~~mb)' + Vm
1
-b + v{RT) 

V~b a 

(Vm- b)2 RT 

In the limit of large molar volume, we have 

lim dZ = b - _!I_ = 0 so 
Vm-+oo d(l /Vm) RT 

a 
-=b 
RT 

a (4.484dm6 atmmoi-2) 

and T = Rb = (0.08206dm3 atm K 1 mol 1) x (0.0434dm3 mol 1) = 1
1259 

K I 
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(b) By interpreting bas the excluded volume of a mole of spherical molecules, we can obtain an estimate 
of molecular size. The centres of spherical particles are excluded from a sphere whose radius is the 
diameter of those spherical particles (i.e. twice their radius); the Avogadro constant times the volume 
is the molar excluded volume b 

(
4rr(2r)3) 

h=NA ---
3 

so r = ~ (__!!:_) 113 

2 4rrNA 

( )
I~ 

I 3(0.0434 dm3 mol-l) 
r=- 1 =1.286xl0-9 dm=l.29xl0- 10 m=IO.l29nml 

2 4rr(6.022 x 1023 mol ) 

E1.21(b) States that have the same reduced pressure, temperature, and volume are said to correspond. The reduced 
pressure and temperature for Nz at 1.0 atm and 25 °C are 

p 1.0 atm 
p, = - = = 0.030 and 

p, 33.54atm 
T. _ !_ _ (25 + 273) K _ 

2 ' - T, - 126.3 K - ·36 

The corresponding states are 

(a) For H,S 

p = p,p, = (0.030) x (88.3 atm) = 12.6 atm I 

T = T,T, = (2.36) x (373.2 K) = 1881 K I 

(Critical constants of HzS obtained from Handbook of Chemistry and Physics.) 

(b) For co, 

p = p,p, = (0.030) x (72.85 atm) = 12.2 atm I 

T = T,T, = (2.36) X (304.2 K) = 1718 K I 

(c) For Ar 

p = p,p, = (0.030) x (48.00 atm) = IIA atm I 

T = T,T, = (2.36) X (150.72 K) = 1356 K I 

E1.22(b) The van der Waals equation is 

RT a 
p-----

- Vm- b VJ. 

which can be solved for b 

RT (8.3145JK- 1mol- 1) x (288K) 
b = Vm- --a-= 4.00 X w-4 m3 mol-l- ( 

p+ - 2 6 0.76m6 Pamol-2 
) 

V 4.0 x I 0 Pa + -,-,-,-,---.,-,-,-----,-,-;;-
m (4.00 x 10 4m3 mol 1) 2 

=11.3 X 10-4 m3 mol- II 
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The compression factor is 

- pVm - (4.0 X 106 Pa) X (4.00 X w-• m3 mol- 1
) - r;;-;;;l 

z--- -~ 
RT (8.3145 J K 1 mol 1) x (288 K) 

Solutions to problems 

Solutions to numerical problems 

Draw up the following table and then plot pj p versus p to find the zero pressure limit of pj p where all 
gases behave ideally. 

p((g dm-3) = pf(kg m-3); 

!Torr= (!Torr) x ( latm ) x (l.Ol3 x 
105

Pa) = !33.3Pa 
760 Torr I atm 

p(Torr 
p/(104 Pa) 
p((kg m-3) 

(pfp) (104 m2 s-2 ) 

91.74 
1.223 
0.225 
5.44 

188.98 
2.519 
0.456 
5.52 

277.3 
3.696 
0.664 
5.56 

452.8 
6.036 
1.062 
5.68 

639.3 
8.522 
1.468 
5.81 

760.0 
10.132 
1.734 
5.84 

!!.. is plotted in Figure 1.2. A straight line fits the data rather well. The extrapolation top = 0 yields an 
p 
intercept of 5.40 x 104 m2 s-2 . Then 

RT (8.314JK- 1 mol- 1) x (298.15K) 
M - -=--co-~---.----,-

- 5.40 x 104 m2 s 2 5.40 x 104 m2 s 2 

= 0.0459kgmol- 1 = r~4-5-.9-g_m_o_l_-1,1 

- y = 5.3963 + 0.046074x R = 0.99549 
5.9 

5.8 

'· CE 5.7 
b 

~ 5.6 

~ 

5.5 

2 4 6 10 12 

pi( 104 Pa) Figure 1.2 
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COMMENT. This method of the determination of the molar masses of gaseous compounds is due to Can
nizarro who presented it at the Karlsruhe conference of 1860 which had been called to resolve the problem of 

the determination of the molar masses of atoms and molecules and the molecular formulas of compounds. 

P1.4 The mass of displaced gas is p V, where Vis the volume of the bulb and pis the density of the gas. The 
balance condition for the two gases is m(bulb) = pV(bulb), m(bulb) = p'V(bulb) 

which implies that p = p'. Because [Problem 1.2] p = pM / RT 

the balance condition is pM = p' M' 

which implies that M 1 = !!.._ x M 
p' 

This relation is valid in the limit of zero pressure (for a gas behaving perfectly). 

In experiment I, p = 423.22 Torr, p' = 327.10Torr; hence 

, 423.22 Torr 1 
M = x 70.014gmol- 1 = 90.59gmol-

327.10Torr 

In experiment 2, p = 427.22 Torr, p' = 293.10Torr; hence 

M' = 
427

·
22

Torr x 70.014gmol- 1 = 102.0gmol- 1 

293.10Torr 

In a proper series of experiments one should reduce the pressure (e.g. by adjusting the balanced 
weight). Experiment 2 is closer to zero pressure than experiment I; it may be safe to conclude that 

I M"' 102 g mol-l 1- The molecules I CH2FCF31 or I CHF2CHF2I have M"' 102g mol- 1
• 

P1.6 We assume that no H2 remains after the reaction has gone to completion. The balanced equation is 

We can draw up the following table 

Total 

Initial amount " "' 0 n + n' 
Final amount 11 - !n' 3 0 ~n' 3 11 + !n' 
Specifically 0.33 mol 0 1.33 mol 1.66 mol 
Mole fraction 0.20 0 0.80 1.00 

_ 11RT _ ((8.206 x I0-2dm3 atmK- 1 mol- 1
) x (273.15 K)) -I 

6
. I 

p-V- (1.66mol) x 
22

.4dm3 -. 1.6 atm. 

p(H2) = x(H2)p =@] 

p(N2) = x(N2)P = (0.20 x (1.66atm)) =I 0.33 atm I 

p(NH3) = x(NH3)p = (0.80) x (1.66 atm) = 11.33 atm I 
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P1.8 From definition of Z [1.16] and the virial equation [1.19], Z may be expressed in virial form as 

Z = I+ 8 (-'-) + C (-
1 
)' + · · · 

Vm Vm 

Since Vm = RT jp [assumption of perfect gas], 1/Vm = p/ RT; hence upon substitution, and dropping 

terms beyond the second power of (1/Vm) 

z = I + 8 UT) +C us 
3 3 1 ( 100 atm Z=l+(-21.7x10-dmmol-)x 

3 1 (0.0821 dm atm K mol 

+ (1.200 X 10-3 dm6 mol-2 ) X ( IOO atm )' 
(0.0821 dm3 atm K 1 mol 1) x (273 K) 

z = I - (0.0968) + (0.0239) =I 0.9271 

(RT) ((0.082ldm3 atmK- 1 mol- 1
) x (273K)) 1 3 1 

Vm = (0.927) X - = (0.927) X =. 0.208 dm . 
p 100 atm 

Question. What is the value of Z obtained from the next approximation using the value of Vm just 
calculated? Which value of Z is likely to be more accurate? 

P1.10 Since 8'(Ts) = 0 at the Boyle temperature (Section 1.3b): 8'(Ts) =a+ be-cfTJ = 0 

P1.12 

Solving forTs : Ts = J In (~a) = 
-(1131 K2J = ls.o x 102 K I 

In [-(-0.1993bar-
1
)] 

(0.2002 bar 1) 

(
2) ( 2a ) 

1
/
2 

( 1 ) (2aR) 
1
1
2 

From Table 1.6 T, = 3 x 
3
bR ' p, = 12 x 

3
b3 

( 
2a) 

1
/
2 

( 12bp,) 
3
bR may be solved for from the expression for Pc and yields -R- . Thus 

T, =G) X (' 2~'b) =G) X (p~,) 

= - X = 210 K (
8) ((40atm) x (160 x I0-3 dm3 mol- 1

)) ~ 
3 8.206 x 10 2 dm3 atm K 1 mol 1 

b (') (V') 160xl0-
6

m
3

mol-
1 

Vmol = NA = 3 x NA = (3) x (6.022 x 1023 mol 

4rr 3 
Vmol = 3,.. 

( 
3 ) 1/3 

I' = 4rr X (8.86 X 10-29 m3
) =I 0.28 nm I 

I = 8.86 X 10-29 m3 
) 
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Solutions to theoretical problems 

pVm 
Z=-= 

RT 

I a 

( 
b 

) 

- -- [see Exercise 1.20(a).] 
I-_ RTVm 

Vm 

which upon expansion of (I - :m) -I = I + -:m- + ( -:-m )' + · · ·yields 

z = I + (b- ~) X (-
1 

) + b2 
(-

1 
)

2 
+ ... 

RT Vm Vm 

We note that all terms beyond the second are necessarily positive, so only if 

can Z be less than one. If we ignore terms beyond bfVm. the conditions are simply stated as 

Z <I 
a 

when RT > b 
a 

Z > I when RT < b 

Thus Z < 1 when attractive forces predominate, and Z > 1 when size effects (short-range repulsions) 

predominate. 

P1.16 The Dieterici equation of state is listed in Table 1.7. At the critical point the derivatives of p with respect 
to (wrt) Vm equal zero along the isotherm for which T = T,. This means that (8pf8Vm)T = 0 and 

(82pj8V~)T = 0 at the critical point. 

p= 
Vm -b ( 

ap ) I aVm- ab- RTV~ l 
BVm T = p V,i.(Vm- b)(RT) 

( 
a2p) = (.!.!?__) I aVm- ab- RTV~ l (-2aV,~ + 4Vmab + RTV~- 2ab

2
) 

8V,i. T 8Vm T V,i.(Vm- b)(RT) + p {V~[(Vm- b)l(RT)]} 

Each of these equations is evaluated at the critical point giving the three equations: 

Pc = a Vc - ab - RTc v; = 0 

Solving the middle equation for Tc. substitution of the result into the last equation, and solving for Vc 

yields the result: Vc = 2b orb = Vc/2 (The solution Vc = b is rejected because there is a singularity 

in the Dieterici equation at the point Vm = b.) Substitution of Vc = 2b into the middle equation and 
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solving for Tc gives the result: Tc = aj4bR or a= 2RTcVc. Substitution of Vc = 2b and Tc = aj4bR 
into the first equation gives: 

I ( a ) -2 p,=4 b2 e 

The equations for Vc. Tc.Pc are substituted into the equation for the critical compression factor (eqn 1.23) 
to give: Zc = Pc Vel RTc = 2e-2 = 0.2707. This is significantly lower than the critical compression factor 
thai is predicted by the van der Waals equation (eqn 1.2la): Z,(vdW) = p, Vc/RT, = 3/8 = 0.3750. 
Experimental values for Zc are summarized in Table 1.5 where it is seen that the Dieterici equation 
prediction is often better. 

pVm RT = I+ B'p + C'p2 + · · · [1.18] 
RT 

pVm B C 
- - I +- +- + · · · [1.19] 
RT - Vm V~ 

B C 
whence B'p + C'p2 + · · · = - + -., + · · · 

Vm Vm 
Now multiply through by Vm. replace pVm by RT{ I + (BfVm) +···).and equate coefficients of 

I BB'RT + C'R2T 2 C 
powersof-:B'RT+ +···=B+-+ 

Vm Vm Vm 

Hence, B' RT = B, implying thai I B' = :T I 

Also, BB'RT + C'R2T2 = C, or B2 + CR2T 2 = C, implying that 
C-82 

C'=--
R2T2 

P1.20 Write Vm =f(T,p); then dVm = -- dT + -- dp (
avm) (avm) 
aT " ap r 

Restricting the variations ofT and p to those which leave Vm constant, that is d V m = 0, we obtain 

( avm) (avm) (ap) ( ap )-' (ap) 
aT P =- ap T X aT Vm =- aVm r X aT Vm 

From the equation of state 

( 
ap ) RT -3 - = --2 - 2(a + bT)Vm 

aVm T Vm (
ap) R b 
aT v = Vm + V~ 

"' 
Substituting 

(
avm) 
aT p = + (RT 2(a + bT)) 

V + V2 
m m 

(
- RT _ 2(a + bT)) 

v~ v~ 
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(a+bT) RT 
From the equation of state ., = p - -

Vm Vm 

(av"') Then --
aT r 

( R+-b) 
Ym 

-;;;;;---'-------;--"'-'-;=-c- = 
R_T + 2 (p-R_T) 
Vm Vm 

= 
RVrn +b 

2pVm- RT 

P1.22 Z = V111 JV.~, where Vg1 =the molar volume of a perfect gas 

From the given equation of state 

RT 
0 Vm=b+-=h+Vm 

p 

b+ V:', b 
then Z=---= 1+-VZ v~ 

For Vm = !Ob, !Ob = b + V~, or V:', = 9b 

!Ob ~ 
thenZ=%=~ 

P1.24 The virial equation is 

pVrn B C 
--!+-+-+··· 
RT - Vm V~ 

(a) If we assume that the series may be truncated after the B term, then a plot of (pVrnfRT) vs (1/Vm) 
will have B as its slope and I as its y-intercept. Transforming the data gives 

p/MPa (V m/dm3)/(mol- 1) pVrnfRT (1/Vm)/(mol dm-3) 

0.4000 6.2208 0.9976 0.1608 
0.5000 4.9736 0.9970 0.2011 
0.6000 4.1423 0.9964 0.2414 
0.8000 3.!031 0.9952 0.3223 
1.000 2.4795 0.9941 0.4033 
1.500 1.6483 0.9912 0.6067 
2.000 1.2328 0.9885 0.8112 
2.500 0.98357 0.9858 1.017 
3.000 0.81746 0.9832 1.223 
4.000 0.60998 0.9782 1.639 

A plot of the data in the third column against that of the fourth column is shown in Figure 1.3. The 
data fit a straight line reasonably well, and they-intercept is very close to I. The regression yields 

B = 1-1.32 x 10-2 dm3mo!- 1 1. 
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l.OO o;:----~-Y-=--.,.0 .-::9:::99,-,4:::9--"'71.:::3 2,-,4:-;5,.-x--.,1 0::_:;, .-x, 
R2 = 0.~9~ ................... .. 

················!·· 

0.98 

0.97 ~----'-----'----'-----:! 
0 2 

Figure 1.3 

(b) A quadratic function fits the data somewhat beuer (Figure 1.4) with a slightly better correlation 
coefficient and a y-intercept closer to 1. This tit implies that truncation of the virial series after the 

term with C is more accurate than after just the B term. The regression then yields 

B = 1-1.51 X w-2 dm3 mol-l I and c = 11.07 X w-3 dm6 mol-'1 

············!····································· 

0.99 .. ·············t···· 

............... ·i .. ................ -~-. ··············!··················· 
o.98 ........... ; ......... .,. ................. . 

···················•)··················-i ................... ; ............ .... . 
y=0.99947-1.5051 x I0- 1x+ 1.0741 x 10--\.1 

0.97 2 = 1.000 . : 
0 2 

Figure 1.4 

Solutions to applications 

The perfect gas law is 

pV = nRT so 
pV 

n=-
RT 

At midRiatitudes 

(l.OOatm) X [(1.00dm2
) X (250 X w-3cm)/10cm dm- 1

] I -3 I 
n = = 1.12 x 10 mol 

(0.08206 dm3 atm K 1 mol 1) x (273 K) 

In the ozone hole 

(I.OOatm) X [(1.00dm2
) X (100 X w-3cm)/10cm dm- 1

] I 4 I 
11 = = 4.46 X 10- mol 

(0.08206 dm3 aim K 1 mol 1) x (273 K) 
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The corresponding concentrations are 

n 1.12 x 10-3 mol 

V = (l.00dm2) x (40 x !03 m) x (!Odm m 1 = 12.8 x 10-9 mol dm-3 1 
) 

11 4.46 x 10-4 mol I I 
and -:-:--:-::-~o:-----'___,C-~,------,-,-::-:-~;c1 = 1.1 x 10-9 mol dm -J V = (l.00dm2) x (40 x !03 m) x (!Odm m ) 

respectively. 

pV 4rr 4rr -
n = RT[l.8], V = 3r3 = 3 x (3.0m)3 =113m3 = volume of balloon 

p = l.Oatm, T = 298 K 

(a) 
_ (l.Oatm) x (1!3x 103dm3) -I 62 103 I 

11 - - . 4. x mol 
(8.206 x I 0 2 dm3 atm K 1 mol 1) x (298 K) 

(b) The mass that the balloon can lift is the difference between the mass of displaced air and the mass 
of the balloon. We assume that the mass of the balloon is essentially that of the gas it encloses. 

Thenm(H2) = nM(H2) = (4.62 x 103 mol) x (2.02gmol- 1) = 9.33 x 103 g 
Mass of displaced air= (113m3) x ( 1.22 kg m-3) = 1.38 x 102 kg 

Therefore, the payload is (13Skg)- (9.33kg) = 11.3 x 102 kg I 
(c) For helium, m = nM(He) = (4.62 x 103 mol) x (4.00gmol- 1) = !8kg 

The payload is now 13Skg-18kg=ll.2 x 102kgl 

P1.30 Avogadro's principle states that equal volumes of gases represent equal amounts (moles) of the gases, 
so the volume mixing ratio is equal to the mole fraction. The definition of partial pressures is 

PJ = Xjp 

The perfect gas law is 

(a) 

(b) 

pV=11RT so 
IIJ Pl XJP 

v=RT=RT 

n(CCI,F) (261 X 10- 12 ) X (l.Oatm) I ~II -31 
-'--:-:-'--'- = = . 1.1 x 10 mol dm . 

V (0.08206dm3 atm K 1mol 1) x (10 + 273) K 

n(CC!2F2) (509 X 10- 12) X (l.Oatm) I -II -31 
and = =_2.2 x 10 moldm . 

V (0.08206dm3atmK 1mol 1) x (10+273)K 

c."<:.:C:..,C:-;.l':c:F..:.) (261 X 10- 12 ) X (0.050atm) I -13 -31 - = =. 8.0 x 10 mol dm . 
V (0.08206 dm3 atm K 1 mol 1) x (200 K) 

11(CC12Fz) (509 X 10- 12) X (0.050atm) I -12 -31 
and = = . 1.6 x 10 mol dm . 

V (0.08206 dm3 atm K 1 mol 1) x (200 K) 
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2 The First Law 

Answers to discussion questions 

02.2 Rewrite the two expressions as follows: 

(I) adiabatic p ex 1 IVY (2) isothennal p ex 1 IV 

The physical reason for the difference is that, in the isothermal expansion, energy flows into the system 
as heat and maintains the temperature despite the fact that energy is lost as work, whereas in the adiabatic 

case, where no heat flows into the system, the temperature must fall as the system does work. Therefore, 
the pressure must fall faster in the adiabatic process than in the isothermal case. Mathematically this 
corresponds to y > I. 

02.4 The change in a state function is independent of the path taken between the initial and final states; hence. 
for the calculation of the change in that function, any convenient path may be chosen. This may greatly 

simplify the computation involved, and illustrates the power of thermodynamics. 

The following list includes only those state functions that we have encountered in the first two chapters. 

More will be encountered in later chapters. 

Temperature, pressure, volume, amount, energy, enthalpy, heat capacity, expansion coefficient, iso

thermal compressibility, and Joule-Thomson coefficient. 

02.6 One can use the general expression for 1CT given in Further Information 2.2 (and proved in Section 3.8, 
eqn 3.48) to derive its specific form for a van der Waals gas as given in Exercise 2.30(a), that is, 

lfT = a/V~1 • (The derivation is carried out in Example 3.6.) For an isothermal expansion in a van der 

Waals gas dUm = (ajV111 )
2. Hence l:!.Um = -a(IJVm.2- 1/Vm.l ). See this derivation in the solution to 

Exercise 2.30(a). This formula corresponds to what one would expect for a real gas. As the molecules 

get closer and closer the molar volume gets smaller and smaller and the energy of attraction gets larger 

and larger. 

Solutions to exercises 

E2.1 (b) The physical definition of work is dw = -F dz [2.4] 

In a gravitational field the force is the weight of the object, which is F = mg 
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If g is constant over the distance the mass moves, dw may be intergrated to give the total work 

1-, ["' 
w=- . Fdz=- J~ .. mgdz=-mg(zr-Zi)=-mgh where h=(zr-Zi) 

.. , ~· 

w = -(0.120kg) x (9.81 ms-2
) x (SOm) = -591 =I 59 J needed I 

This is an expansion against a constant external pressure; hence w = -Pcxb.. V [2.8] 

The change in volume is the cross-sectional area times the linear displacement: 

L>V = (SO.Ocm2
) x (!Scm) x (~)' =7.5 x 10-4 m3

, 
IOOcm 

so II'= -(121 x I03 Pa) x (7.5 x I0- 4 m3)=~as1Pam3 = IJ. 

For all cases b.U = 0, since the internal energy of a perfect gas depends only on temperature. (See 
Molecular i11te1pretation 2.2 and Section 2.11 (b) for a more complete discussion.) From the definition 

of enlhalpy, H = U + pV, so l>H = L>U + L>.(pV) = L>.U + l>(11RT) (perfect gas). Hence, L>.H = 0 as 
well, at constant temperature for all processes in a perfect gas. 

IV= -11RT In(~) [2.11] 

31.7dm
3 

I = -(2.00mol) x (8.3145 J K- 1 mol- 1) x (22 + 273) K x In 
3 

= 1-1.62 x 103 J 
22.8dm 

q= -IV=II.62 x 103 Jj 

(b) IL>U=l>H=OI 

IV= -p"l>. V [2.8) 

where Pcx in this case can be computed from the perfect gas Jaw 

pV = nRT 

(2.00mol) x (8.3145JK- 1mol- 1
) x (22+273)K 1 1 I05Pa 

sop= 
3 

x (!Odmm- )· = 1.55 x 
31.7 dm· 

-( 1.55 X 105 Pa) X (31.7- 22.8) dm 3 I 8 o' I 
and w = 1 3 =. -1.3 x 1 J. 

(!Odmm )· 

q = -w =jus x 103 1 I 

(c) IL>V=l>H=OI 

lw = 0 I [free expansion] q = 6.U- w = 0-0 =@] 

COMMENT. An isothermal free expansion of a perfect gas is also adiabatic. 

The perfect gas law leads to 

= 
p 1T2 (Ill kPa) x (356K) I I 

or pz = -- = = 143kPa 
T, 277K 

Pi V nRT, 
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There is no change in volume, so I w = 0 1- The heat How is 

(a) 

q = f Cv dT"' Cvt:J.T = (2.5) x (8.3145 1 K- 1 mol-l) x (2.00mol) x (356- 277) K 

= 13.28 X 103 J I 

-(7.7 X 103 Pa) X (2.5 dm3) ~ 
w=-Pcxb:.V= 11 =~ (lOdm m )· 

(b) w=-nRTtn(~)[2.ll] 

( 
6.56 g 

111 
=- 39.95gmol 

= 1-52.811 

) ( ) 
(2.5 + !8.5)dm3 

1 
x 8.3l45JK- 1mol- 1 x(305K)xln 

3 l8.5dm· 

!:J.H = l:J. 00,,H = -t:J.,,H = -(2.00mol) x (35.3 kJ mol- 1
) = l-70.6 kJ I 

Since the condensation is done isothermally and reversibly, the external pressure is constant at 1.00 atm. 
Hence, 

q = q,, = !:J.H = 1-70.6 kJ I 

w = -Pcx 6. V [2.8] where 6. V = Vliq - Vvap :::::::: - Vvap because V1iq « Vvap 

On the assumption that methanol vapor is a perfect gas, Vvap = nRT jp and p = Pcx· since the 
condensation is done reversibly. Hence, 

w "'nRT = (2.00 mol) x (8.3145 J K- 1 mol- 1
) x (64 + 273) K = 15.60 x 103 J I 

and !:J.U =q+w= (-70.6+5.60)kJ =l-65.0kJI 

The reaction is 

so it liberates I mol of H2(g) for every I mol Zn used. Work at constant pressure is 

W =-Per. b. V = -pVgas = -nRT 

=- ( 
5

·
0

g 
1

) x (8.31451 K- 1mot- 1) x (23 + 273) K = 1-1881 I 
65.4 g mol 
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(a) At constant pressure, q = !:J.H. 

f In 
100+273 K 

q= CpdT= [20.17+(0.4001)T/K]dTJK- 1 

0+273 K 

= [(20.17)T+ ~(0.4001) X (T
2 )JI 373

K JK- 1 

2 K V3K 

= [(20.17) X (373- 273) + ~(0.4001) X (3732
- 2732

)] J = 114.9 X 103 J I= t>H 

IV= -pt> V = -nRt>T =- (I.OOmol) x ( 8.3145 J K- 1 mol- 1) x (100 K) = 1-831 J I 

t>U=q+w=(I4.9-0.831)kJ=II4.1 kJI 

(b) The energy and enthalpy of a perfect gas depend on temperature alone. Thus, t>H = 114.9 kJ I and 

t>U = ji4.1 kJ I as above. At constant volume, w =@]and t>U = q, so q =I +14.1 kJ j. 

For reversible adiabatic expansion 

( V) 1/c 
Tr = ri v~ [2.28a] 

where 

c = Cv.m = Cp.m -R = (37.11- 8.3145) J K- 1mol- 1 = 
3

.4
63

, 
R R 8.3!45J K-lmol 1 

so the final temperature (is ) 
113

_
463 

500 X 10-3 dm3 

Tr = (298.15K) x 3 =12ooKI 
2.00dm 

E2.10(b) Reversible adiabatic work is 

IV= Cvt>T [2.27] = n(Cp.m- R) x (Tr- T;) 

where the temperatures are related by [solution to Exercise 2.15(b)} 

(
V;)I/c Cvm Cpm -R 

Tr = T; - [2.28a] where c = -·- = · = 2.503 
Vr R R 

( ) 

1/2.503 
400 X IQ-3dm3 

So Tr = [(23.0+ 273.15) K] x 3 =!56 K 
2.00dm 

and IV= ( 
3
·
12 

g 
1

) x (29.125- 8.3145) J K- 1 mol-l x (!56- 296) K = j-325 J I 
28.0 gmol 

E2.11(b) For reversible adiabatic expansion 

Pr V( = p; V;" [2.29] so ( 
3 3)

1.3 
V; y 500 X w- dm 

Pr = p; (-) = (8.73 Torr) x 1 = 18.5 Torr I 
Vr 3.0dm· 
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q1, = nCp,ml>T [2.24] 

C m =..!!E._= 
1781 

=I53JK-I mol-' I 
p. n!>T 1.9mol x 1.78K 

Cv.m = Cp,m- R =(53- 8.3) J K- 1 mol- 1 = I'4_5_J_K __ --:-, _m_o_l_...,,...,/ 

!>H = qp = Cpl>T [2.23b, 2.24] = nCp,ml>T 

t>H = qp = (2.0mol) x (37.11 J K- 1 mol- 1) x (277- 250) K = 12.0 x 103 J mol- 1 I 
!>H = t>U + !>(pV) = t>U + nR!>T so t>U = !>H- nR!>T 

!>U = 2.0 x 103 J mol- 1 - (2.0 mol) x (8.3145 J K- 1 mol-') x (277- 250) K 

=11.6 xl03 Jmol- 1 1 

E2.14(b) In an adiabatic process, q =@].Work against a constant external pressure is 

-(78.5 x 103 Pa) x (4 x 15- 15) dm3 I 3 I 
w = -p,t>V = = -3.5 X 10 J 

(IOdmm 1) 3 

t>U = q + w = r~--3-.-5 _x_l_0.,.-3 ;'I 
One can also relate adiabatic work to ~T (eqn 2.27): 

w 
w = Cv!>T = n(Cp.m- R)t>T so !>T = , 

n(Cp.m -R) 

-3.5 x 103 J 
!>T= 1 =/-24K/. 

(5.0mol) x (37.11- 8.3145)JK- 1 mol 

t>H = t>U + !>(pV) = !>U + nR!>T, 

= -3.5 x 103 J + (5.0mol) x (8.3145J K- 1 mol- 1) x (-24K) = 1-4.5 x 103 J I 

E2.15(b) In an adiabatic process, the initial and final pressures are related by (eqn 2.29) 

Pf V{ =Pi V( where 
Cp.m Cp.m 20.8J K- 1 mol- 1 

y = -- = = ------..,.---., = 1.67 
Cv.m Cp.m- R (20.8- 8.31) JK 1 mol 

Find Vi from the perfect gas law: 

nRT; (1.5mol)(8.31JK- 1 mol- 1)(315K) - 3 V; = -- = = 0.0171 m 
p; 230 x 103 Pa 

so Vr = V; ..C. = (0.017Tm3) --- =I 0.0205 m3 / (
p·)'iY (230kPa)l/l.fi? 
PI 170kPa 

Find the final temperature from the perfect gas law: 

PrVr (170 x 103 Pa) x (0.020S m3) ~ 
Tr=-= =~ 

nR ( 1.5 mol)(8.31 J K 1 mol 1) 
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Adiabatic work is (eqn 2.27) 

IV= Cv!:>.T = (20.8- 8.31) JK- 1 mol-l x 1.5 mol x (279- 315) K = 1-6.7 x 102 1 I 

E2.16(b) At constant pressure 

q = !:>.H = n!:>.,,H" = (0.75 mol) x (32.0 kJ mol-l) = 124.0 kJ I 

and w = -pf:l Y "' -pVnpoc = -nRT = -(0.75 mol) x (8.3145 J K- 1 mol-l) x (260 K) 

w = -1.6 X 103 J = 1-1.6 kJ I 
!:>.U = IV+ q = 24.0- 1.6 kJ = 122.4 kJ I 

COMMENT. Because the vapor is here treated as a perfect gas, the specific value of the external pressure 

provided in the statement of the exercise does not affect the numerical value of the answer. 

E2.17(b) The reaction is 

C6H50H(l) + 702(g)--+ 6C02 (g) + 3H20(1) 

!:>.,W = 6!:>.rW(CO,) + 3!:>.rlF(H20)- !:>.rlF(C6H50H) -7!:>.rH0 (02) 

= [6(-393.15) + 3(-285.83)- (-165.0) -7(0)]kJ mol-l= 1-3053.6 kJ mol- 1 I 

E2.18(b) We need !:>.rH0 for the reaction 

(4) 2B(s) + 3Hz(g)--+ B2H6(g) 

reaction(4) = reaction(2) + 3 x reaction(3)- reaction(!) 

Thus, f:lrH 0 = f:l,H"[reaction(2)} +3 x f:l,H"[reaction(3)}- f:l,H"[reaction(l)} 

= [ -2368 + 3 x ( -241.8) - ( -1941)] kJ mol- 1 = 1-1152 kJ mo!- 1 I 

E2.19(b) For anthracene the reaction is 

C14H1o(s) + :JfO,(g)--+ 14CO,(g) + 5Hz0(1) 

!:>.,U0 = -7061 kJ mol-l - ( -~ X 8.3 X w-J kJ K- 1 mol-l X 298 K) 

= -7055 kJ mol-l 

lql = [qvl = ln!:>.,U"I = ( 
2

'
25 

X w-J gl) X (7055kJmol- 1) = 0.0922kJ 
172.23gmol 

c = .!'!.!. = 
0

'
0922 

kJ = 0.0683 kJ K -I = 168.3JK-I I 
!:>.T 1.35K · 
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When phenol is used the reaction is 

C6H50H(s) + lfO,(g) --> 6C02 (g) + 3H20(1) 

6.,H0 = -3054 kJ mol- 1 [Table 2.5] 

6.cU = l:icH- flngRT, b..ng = -~ 

= (-3054kJmoi- 1) + (~) x (8.314 x w-3 kJK- 1 mol- 1) x (298K) 

= -3050 kJ mol- 1 

lql = ( 
135 

x w-J ~) x (3050kJmol- 1) = 4.37SkJ 
94.12gmol 

lql 4.375 kJ I I 6.T=-= 
1 

=+64.1K 
C 0.0683kJ K 

COMMENT. In this case 6.clf' and b.cH9 differed by about 0.1 percent. Thus, to within 3 significant figures, 

it would not have mattered if we had used 6.crr" instead of flcif3, but for very precise work it would. 

E2.20(b) The reaction is AgBr(s)--> Ag+(aq) + Br-(aq) 

6.,0 ,H0 = 6.rH0 (Ag+. aq) + 6.rH"(Br-. aq) - 6.rH"(AgBr. s) 

= [ 105.58 + ( -121.55) - ( -100.37)] kJ mol- 1 =I +84.40 kJ mol- 1 I 

E2.21(b) The combustion products of graphite and diamond are the same. so the transition C(gr) --> C(d) is 
equivalent to the combustion of graphite plus the reverse of the combustion of diamond, and 

6.'""'H 0 = [-393.51- (395.41)]kJmol- 1 =I +1.90 kJmol- 1 1 

E2.22(b) (a) reaction(3) = ( -2) x reaction( I)+ reaction(2) and Ll"g = -I 

The enthalpies of reactions are combined in the same manner as the equations (Hess's law). 

6.,H0 (3) = (-2) X t.,H"(I) + 6.,H0 (2) 

= [(-2) x (52.96) + (-483.64)]kJmol- 1 

= l-589.56kJ mol- 1 I 

6.rU9 = i::l.r~- b.ngRT 

= -589.56kJmoi- 1 - (-3) x (8.314JK- 1mol- 1) x (298K) 

= -589.56kJmol- 1 +7.43kJmol- 1 =l-582.13kJmol- 1 1 

(b) 6.rH9 refers to the formation of one mole of the compound, so 

6.rH 0 (Hl) = 1 (52.96kJmol- 1
) =126.48kJmol- 1 1 

6.rH"(H,O) = 1 (-483.64kJmol- 1
) =l-241.82kJmol- 1 1 
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E2.23(b) t>,ft> = t>,U" + RT t>n, [2.21] 

= -772.7 kJ mol-l + (5) x (8.3145 x 10-3 kJ K- 1 mol-l) x (298 K) 

= 1-760.3 kJ mol- 1 I 

E2.24(b) Combine the reactions in such a way that the combination is the desired formation reaction. The enthalpies 
of the reactions are then combined in the same way as the equations to yield the enthalpy of formation. 

tNz(g) + toz(g)--. NO(g) 
NO(g) + tclz(g)--> NOCl(g) 

tNz(g) + t02(g) + tCiz(g)--> NOCl(g) 

Hence, t>rH"(NOCl,g) =I +52.5 kJmol- 1 I 

E2.25(b) According to Kirchhoff's law [2.36] 

+ 90.25 
-t(75.5) 

+ 52.5 

I00°C 

t>,H"(100°C) = t>,ft>(25°C) + { t>,c;;dT 
J2soc 

where Llr as usual signifies a sum over product and reactant species weighted by stoichiometric 
coefficients. Because Cp,m can frequently be parametrized as 

Cp,m =a+ bT + cfT2 

the indefinite integral of Cp.m has the form 

f Cp,mdT =aT+ tbT2 -efT 

Combining this expression with our original integral, we have 

Now for the pieces 

t>,H" (25 °C) = 2(-285.83 kJ mol-l) - 2(0) - 0 = -571.66 kJ mol-l 

!>,a= [2(75.29)- 2(27.28)- (29.96)]JK- 1 mol-l= 0.06606kJK- 1 mol-l 

t>,b = [2(0) - 2(3.29) - (4.18)] x 10-3 J K-2 mol- 1 = -10.76 x 10-6 kJ K-2 mol- 1 

6.,c = [2(0)- 2(0.50)- (-1.67)] x 105 JKmol- 1 = 67kJKmol- 1 
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~,H9 (100°C) = [ -571.66 + (373- 298) x (0.06606) + ~(3732 - 2982
) 

x(-10.76 x w-6
)- (67) x (3~3 - 2~8 ) J kJ mol- 1 

=l-566.93kJmoi- 1 j 

E2.26(b) The hydrogenation reaction is 

(1) C2H2(g) + H,(g)--> C,[4(g) ~,ft'(T) =? 

The reactions and accompanying data which are to be combined in order to yield reaction (1) and 
t>,H" (T) are 

(2) H,(g) + ~O,(g)--> H20(!) ~,H"(2) = -285.83 kJ mol-l 

(3) C,[4(g) + 30,(g)--> 2H20(1) +2C02(g) ~,ft'(3) = -1411 kJmoi- 1 

(4) C2H2(g) + ~O,(g)--> H20(1) + 2C02(g) ~,H"(4) = -1300kJ mol- 1 

reaction (I)= reaction (2)- reaction (3) +reaction (4) 

(a) Hence, at 298 K: 

~,It'= ~,H"(2)- ~,H"(3) + t>,lt'(4) 

= [(-285.83)- (-1411) + (-1300)]kJmol- 1 =l-I75kJmol_1 , 

~,cr = ~,H"- t>n,RT [2.21]; ~n, =-I 

= -175 kJ mol-l - (-1) x (2.48 kJ mol- 1) = 1-173 kJ mol- 1 j 

(b) At 348 K: 

t>,ft' (348 K) = ~,It' (298 K) + ~,c:; (348 K - 298 K) [Example 2.6] 

~,Cp = I>Jcp~m(J)[2.37] = cp~m(C,H,,g)- cp~m(C,H,,g)- cp~m(H,,g) 
J 

= (43.56-43.93-28.82) x I0-3kJK- 1 mol-l = -29.19 X I0-3kJK- 1 mol-l 

~,H"(348K) = (-175kJmoi- 1)- (29.19 x w-3kJK- 1 mol- 1) x (50K) 

=l-176kJmoi- 1 j 

E2.27(b) NaCl, AgN03, and NaN03 are strong electrolytes; therefore the net ionic equation is 

Ag+(aq) + cqaq) --> AgCI(s) 

~,If'= t>rH 9 (AgCl)- ~rlf'(Ag+)- ~rlf'(Cl-) 

= [( -127.07) - (105.58) - ( -167.16)] kJ mol- 1 = 1-65.49 kJ mol- 1 j 
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loniz;~tion 

Dissociation 

Vaporization 
Br 

Sublimation 
Ca 

-Fommtion 

' 

Ca2 '(g) + 2e- + 2Br(g) 

Ca(g) + 2Br (g) 

Ca(g) + Br,(g) 

Ca(g) + Br2(1) Ca2+ (g) + 2Br- (g) 

Ca(s) + Br2(1) 

Ca2+(g) + 2Br-(aq) if 
Ca8r2(s) 

Electron 
gain Br 

Hydration Br-

~ Hydration ci+ 
-Solution 

Figure 2.1 

E2.28(b) The cycle is shown in Figure 2.1. 

-6.hydH"(Ca2+) = -L>,oloH"(CaBr,)- 6.rH0 (CaBr,,s) + 6.'"bH0 (Ca) 

+ ~vapH9 (Br2) + 6.dissH
9

(Br2) + LlionH0 (Ca) 

+ 6.;o,H"(Ca+) + 26.,,H"(Br) + 26.hydH"(Br-) 

= [ -( -103.1) - ( -682.8) + 178.2 + 30.91 + 192.9 

+ 589.7 + 1145 + 2( -331.0) + 2( -337)] kl mol-l 

= 11587 kl mol- 1 I 

E2.29(b) The Joule-Thomson coefficient 11 is the ratio of temperature change to pressure change under conditions 
of isenthalpic expansion. So 

" = ( ~:) H '" -:-: = -:-:( 1--:.0:::-0--~--:~:::-~:--) a-tm- = Ll 0"-.4'-'8--'K"-a=tm=---I_JI 

E2.30(b) The internal energy is a function of temperature and volume, Urn = Um(T, Vm). so 

dUm= -- dT+ -- dV111 (au"') (au"') 
aT y

111 
aVm T 

For an isothermal expansion dT = 0; hence 

(au"') a dUm= -- dVm = nr dVm = - 2 dVm 
aVm T Vm 

1
Vm.2 

b.Um = 
Vm,l 1

Vm,2 a ~22.1 drn
3 

mol-
1 dVm a 122.1 dm

3 
mol-L 

dUm= -., dVm =a - 2- = --
Vm.l Vn; l.OOdm·'mol- 1 Vm Vm l.OOdm~ mol- 1 

a a 
= 22.1 dm3 mol 1 + -l-.O-O_d_m~3',-n-o-l' 

21.la - , 
-----..,

3
----,

1 
= 0.95475adm-· mol 

22.1 dm mol 
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From Table 1.6, a ~ 1.337 dm6 atm mol- 1 

b.U, = (0.95475 mol dm3) x ( 1.337 atm dm6 mol-2) 

- ( I m
3 

) = (1.2765atmdm3 mol- 1) x (1.01325 x J05 Paatm- 1) x 3 103 dm 

= 129Pam3 mol- 1 =I 129Jmol- 1 I 

IV=-fpdVm where 
RT a 

p = --- - -., for a van der Waals gas. 
Vm -b Vn1 

Hence, 

IV=-J (__!!!____) dVm + J-; dVm = -q + b.U,., 
Vm- b V.n 

Thus 

122.1dm
3

mol-l ( RT ) 122.1dm3 mol- 1 

q= --- dV,=RTin(Vm-b) 
3 

_
1 l.OOdmJmol- 1 Vm- b l.OOdm mol 

(
22.1- 3.2o x w-') I I = (8.314JK- 1 mol- 1) x (298K) x In , = +7.7465kJmol- 1 

1.00- 3.20 X 10 -

and IV= -q +~>Urn= -(7747 J mol- 1) + (129 J mol- 1) = I-761SJ mol- 1 I= 1-7.62 kl mol-l I 

E2.31(b) The expansion coefficient is 

v'c3.7 x w-• K- 1 + 2 x 1.52 x w-6 T K-2) 

v 
V'[3.7 x 10-4 + 2 x 1.52 x I o-6 (T (K)] K- 1 

V'[0.77 + 3.7 x 10 4(T/K) + 1.52 x 10 6(T/K)2] 

[3.7 x w-4 +2 x 1.52 x w-6 (310)JK-' I 3 'I = = 1.21 x w- K-
0.77 + 3.7 x 10 4 (310) + 1.52 x 10 6(310)2 

E2.32(b) Isothermal compressibility is 

so 
b.V 

b.p= --
VKr 

A density increase of 0.08 percent means 6. V fV = -0.0008. So the additional pressure that must be 

applied is 

o.ooos I I b.p= 6 1
=3.6xl02 atm 

2.21 X JQ- atm-

E2.33(b) The isothermal Joule-Thomson coefficient is 

( a H) = -rJ.Cp = -(1.11 K atm- 1) x (37.11 J K- 1 mol- 1) = 1-41.21 atm- 1 mol- 1 I 
ap r 
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If this coefficient is constant in an isothennal Joule-Thomson experiment, then the heat which must be 

supplied to maintai_n constant temperature is t:J.H in the following relationship 

C!.H fn 1 1 1 1 -- = -4l.21atm- mol- so C!.H = -(4l.21atm- mol- )nb.p 
C!.p 

C!.H = -(4!.21 atm- 1 mol- 1) x (12.0mol) x (-55 atm) = ln.2x 103 1 I 

Solutions to problems 

Assume al\ gases are perfect unless stated otherwise. Unless otherwise stated, thermochemical data are 

for 298 K. 

Solutions to numerical problems 

nRT 
Vr = -- » v,; so C!. V "' Vr 

p" 

(
nRT) 1 Hencew"' (-p") x - = -nRT = (-l.Omol) x (8.3141K- 1 mol-) x (1073 K) 
p" 

Even if there is no physical piston, the gas drives back the atmosphere, so the work is also 

P2.4 The vi rial expression for pressure up to the second coefficient is 

p = (~:) (1 + :J [!.19] 

w=-1
1 

pdV= -nj
1

(RT) x (1 +~) dVm = -nRTin(Vmr) +nBRT(-
1
-- -

1-.) 
1 1 Vm Vm Vm.t Vm.f Vm.l 

From the data, 

nRT = (70 x 10-J mol) X (8.314 1 K- 1mol- 1) x (373 K) = 2171 

5.25 cm3 
- 3 -I 

Vm i = 
3 

= 75.0cm mol 
· 70 x 10 mol 

6.29cm3 - 3 -1 
V111 r = 

3 
= 89.9cm mol 

· 70 x 10 mol 

and so 8 --- = (-28.7cm mol-) x ( 
I I ) 3 1 ( I 

Vm.f Vm,i 89.9 cm3 mol 75.0 cm3 mol 1) 

= 6.34 X 10-z 

Therefore, 

- (6 29) - - 2 - ~ 
W = (-217 1) X Jn -·- + (217 1) X (6.34 X 10- ) = (-39.21) + (13.81) = ~ 

5.25 
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Since I:!.U = q +IV and t!.U = +83.5 J, q = I:!.U- w = (83.5 J) + (25 J) =I +109 J I 

I:!.H = I:!.U + tJ.(pV) with pV = nRT (1 + ~) 
Vm 

tJ.(pV) = nRTBI:!. (-
1
-) = nRTB (-

1
-- -

1
-), as I:!.T = 0 

Vm Ym,r Ym.i 

= (2J7J) X (6.34 X J0-2 ) = !3.8 J 

Therefore, I:!.H = (83.5 J) + (13.8 J) =I +97 J I 

J
v, 

IV=- pdV 
v, 

with 
nRT n2a 

p=----
V-nb V2 

[Table 1.7] 

Therefore, J
v, dV , Jv' dV 

w = -nRT --- +n-a -
2 

= 
V 1 V- nb y1 V 

-nRT In --- - n a - - -( 
Vz - nb) 2 ( I I ) 
v, -nb Vz v, 

This expression can be interpreted more readily if we assume V >> nb, which is certainly valid at all but 
the highest pressures. Then using the first term of the Taylor series expansion, 

x' 
In( I - x) = -x- 2 + · · · for lxl « I 

( 
nb) nb 

ln(V- nb) = In V +In I - V "" In V - V 

and, after substitution 

IV"" -nRT In (V') + n2bRT (~- ~) -n2a (~- ~) v, v, v, v, v, 

""-nRT In (V') -n2(a- bRT) (~- ~) v, v, v, 

:=::: +wo - 112(a- bRT) (~ - ~) =Perfect gas value+ van der Waals correction. v, v, 

wo, the perfect gas value, is negative in expansion and positive in compression. Considering the correction 
tenn, in expansion Vz > V,, so ((lfVz) - (ljV, )) < 0. If attractive forces predominate, a > bRT and 
the work done by the van der Waals gas is less in magnitude (less negative) than the perfect gas-the gas 
cannot easily expand. If repulsive forces predominate, bRT > a and the work done by the van der Waals 
gas is greater in magnitude than the perfect gas-the gas easily expands. In the numerical calculations, 

~:)nsider,::::::;~:h(e ~~)iti: v(~~:e~o!- 1 ) x (8.314J K- 1 mo!- 1) x (298 K) x In ( 2·0dm:) 
~ Indm 

wo=-!.72x 103 J=I-1.7kJI 

(b) w = wo - (1.0 mo!)2 x [0- (5.11 x w-2 dm3 mo!- 1) x (8.3!4J K- 1 mo!- 1) x (298 K)] 

x (-
1
- 3 - -

1
-,) = (-1.72 x 103 J)- (63J) = -1.78 x I03 J =1-I.skJ I 

2.0dm I.Odm 
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(c) w = wo- (l.Omol)2 x (4.2dm6 atm mol-2) x (--
1
- 3 - --

1
-

3
) 

2.0dm l.Odm 

w = wo + 2.1 drn3 atm 

= (-1.72 x 103 J) + (2.1 dm3atm) x -- x - ( I m )' ( 1.01 x 105 Pa) 
IOdm I alm 

= ( -1.72 X 103 J) + (0.21 X 103 J) = 1-1.5 kJ I 

Schematically, the indicator diagrams for the cases (a), (b), and (c) would appear as in Figure 2.2. 
For case (b) the pressure is always greater than the perfect gas pressure and for case (c) always less. 
Therefore, 

1~ 1~ 1~ pdV(c) < pdV(a) < pdV(b) 
V1 V1 V1 

Figure 2.2 

P2.8 The calorimeter is a constant-volume instrument as described in the text (Section 2.4); therefore 

t.U = qv 

The calorimeter constant is determined from the data for the combustion of benzoic acid 

t.U = I X (-3251 kJ mol-L)= -21.96kJ ( 
0.825g ) -

122.12gmol 

Since t. T = 1.940 K, C = ~ = 21.96 kJ = ll.3lkJ K-1 
t.T 1.940 K 

ForD-ribose, t.U = -C t.T = -( 11.32 kJ K- 1) x (0.910 K) 
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Therefore. t>.,U =- = -(11.32 kJ K- 1) x (0.910 K) x = -2127 kJ mol-l b.U - (150.13gmol- 1
) -

• ~Tig 

The combustion reaction for 0-ribose is 

Since there is no change in the number of moles of gas, 6.rH = ClrU [2.21] 

The enthalpy of formation is obtained from the sum 

5CO,(g) + 5H,O(l)--> CsHroOs(s) + 50,(g) 
5C(s) + 50z(g)--> 5CO,(g) 
5Hz(g) + ~O,(g)--> 5Hz0(1) 

5C(s) + 5Hz(g) + ~Oz(g)--> CsHroOs(s) 

Hence b.rH~I-1267 kJ mol- 1 I 

P2.10 Data: methane-octane normal alkane combustion enthalpies 

Species 
t>.,Hj(kJ mol- 1) 

M/(gmol- 1) 

CH, 
-890 

16.04 

CzH6 
-1560 

30.07 

C4Hro 
-2878 

58.13 

2130 
5 X (-393.51) 
5 X ( -285.83) 

-1267 

c5H, 
-3537 

72.15 

CsHrs 
-5471 

114.23 

Suppose that 6.cH = k M". There are two methods by which a regression analysis can be used to 
determine the values of k and 11. If you have a software package that can perfonn a "power fit" of the 

type Y = aXb, the analysis is direct using Y = 6.cH and X = M. Then, k = a and 11 = b. Alternatively, 

taking the logarithm yields another equation-one of linear form 

In lb.,HI =In lkl + nlnM where k < 0 

This equation suggests a linear regression fit of ln(6.cH) against In M (Figure 2.3). The intercept is Ink 

and the slope is n. Linear regression fit 

In lkl = 4.2112, standard deviation= 0.0480; k = -e4
·
2112 = l-67.441 

I"= 0.92531. standard deviation= 0.0121 

R = 1.000 

This is a good regression fit; essentially all of the variation is explained by the regression. 

For decane Lhe experimental value of l:::.cH equals -6772.5 kJ mol-l (CRC Handbook of Chemistry and 

Physics). The predicted value is 

t>.,H = kM" = -67.44(142.28)'0·9253 ) kJ mol- 1 = [ -6625.5 kJ mol- 1 I 

1

-6772.5 _ ( -6625.5) I 
Percent error of prediction = _

6625
_
5 

x I 00 
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Nonnal alkane combustion enthalpies 

2.5 3.0 3.5 4.0 4.5 
lnM/(gmol- 1) 

Percent error of prediction = 12.17 percent I 

5.0 

Figure 2o3 

H30+(aq) + NaCH3COO 0 3H20(s)--+ Na+(aq) + CH3COOH(aq) + 4H20(1) 

n,.11 = m,.h/M,.I1 = 1.3584g/(136008gmol- 1
) = Oo0099824mol 

Application of eqns 2014 and 2.19b gives: 

l:l.rHm = -.6.calorimeter H /1Zsalt = -Ccalorimeter+comenls 6.T /nsalt 

= -(Ccalorimcter + Csolution)6.T /11salt 

= -(9l.OJK- 1 +4.144JK- 1 cm-3 x 100cm3) x (-0.397K)j0.0099824mol 

= 20.1 kJmol- 1 

Application of eqn 2.32 gives: 

ll,ff" = llrH''(Na+, aq) + llrli"(CH,COOH, aq) + 3llrH"(HzO,l) 

-llrli"(H+,aq) -llrH"(NaCH,COO · 3Hz0,s) 

(where the water coefficient is 3 not 4 because one water in the chemical equation is part of the hydrated 
hydrogen ion). Solving for llrH"(Na+, aq) and substituting llrH" values found in Tables 2.5 and 2.7 
gives: 

llrH"(Na+,aq) = ll,H" -llr!i"(CH,COOHoaq)- 3llrli"(Hz0ol) + llrH"(H+,aq) 

+ llrH" (NaCH,COO · 3Hz0, s) 

l'>rli"(Na+ 0 aq) = {20.1 - ( -485.76) - 3( -285.83) + (0) + ( -1604)) kl mol- 1 

= 1241 kJmol- 1 I 
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P2.14 We must relate the formation of DyCI3 

Dy(s) + 1.5Cl,(g)--> DyC!3(s) 

to the three reactions for which for which we have information. This reaction can be seen as a sequence 
of reaction (2), three times reaction (3), and the reverse of reaction (I), so 

llrlf" (DyCI3, s) = t.,H 0 (2) + 31l,H"(3) - t.,H"(I ), 

llrH0 (DyCJ3,s) = [-699.43 + 3(-158.31)- (-180.06)Jk1mol- 1 

=l-994.30kJmol-'l 

P2.16 (a) t.,H" = t>rH"(SiH,OH)- t>rH"(SiH4)- it.rH"(O,) 

= [-67.5- 34.3- iCO)J kJ mol- 1 = 1-101.8 kJ mol- 1 I 

(b) t.,H" = t>rH"(SiH,O)- llrH"(H,O)- llrW(SiH4)- t>rH"(02) 

= [-23.5 + (-285.83)- 34.3- OJ kJ mol-l= l-344.2kJmol- 1 I 

(c) t.,H" = t>rH"(SiH,O)- t>rH"(SiH30H)- t>rH"(H,) 

= [ -23.5- ( -67.5) -OJ kJ mol- 1 = 144.0 kJ mol- 1 I 

P2.18 dH =(a H) dT + (aH) dp or dH =(a H) dp [constanttemperatureJ 
aT , ap T ap T 

(aHm) = -!LCp.m [2.53J =- ( 2a -b) 
ap T RT 

= - - 0.044 dm mol 
( 

(2)x(3.60dm6 atmmol-2
) 3 -r) 

(0.0821 dm3 atm K 1 mol 1) x (300 K) 

= -0.2483dm3 moi- 1 

[,,, [,"' t.H = dH = . (-0.2483 dm3 mol- 1) dp = -0.248J(pr- p;) dm3 mol- 1 

Pi f'• 

RT a 
p = --- 2 [1.2lbJ 

Vm- b Vm 

(
(0.0821 dm3 atm K- 1 mol- 1

) x (300 K)) (3.60dm6 atm mol-') -
p; = - = 1.225 atm 

(20.0 dm3 mol 1) - (0.044 dm3 mol 1) (20.0 dm3 mol 1 )2 

(
(0.0821dm3 atmK- 1 mol- 1

) x (300K)) (3.60dm6atmmoi-2
) -

pr = - = 2.438 atm 
( 10.0 dm3 mol 1) - (0.044 dm3 mol 1) ( 10.0 dm3 mol- 1 )2 
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t;H = (-0.248Jdm3 mol- 1) x (2.43Satm- 1.225atm) 

= (-0.30ldm3 atmmoi- 1) x -- x = -30.5Jmol- 1 
( 

I m )' ( 1.013 x 10
5 

Pa) I I 
!Odm atm 

Solutions to theoretical problems 

P2.20 A function has an exact differential if its mixed partial derivatives are equal. That is, f(x,y) has an exact 

differential if 

P2.22 

(a) ~ (af) = ~(2xy) = 2x ay ax ay and a (af) a , - - =-(x +6y)=2x ax ay ax 

(b) ~ (aj) =~(cosxy -xysinxy) ay ax ay 
=- xsinxy- x sinxy- x2ycosxy = -2xsinxy- x2ycos.xy 

and~ (a1) = ~(-x2 sinxy) = -2xsinxy- x2ycosxy ax ay ax 

(c) ~ (a1 ) = ~(3x2ll = 6x2y and ~ (a1 ) = ~(2x3y) = 6x2y ay ax ay ax ay ax 

(d) ~ (a1) = ~(le' +I)= e' at as at and ~ (a1 ) = ~(2t + e') = e·' as at as 

Cv =(au) aT v 

( aCv) _(~(au) ) -(~(au) ) [derivatives may be taken in any order] av r- av aT v r- aT av r v 

( au) = 0 for a perfect gas [Section 2.ll(b)] 
av r 

Hence, - =0 (acv) 
av r 

. . (aH) L1kew1se Cp = -
ar p 

so 

( a H) = 0 for a perfect gas. 
ap ,. 

Hence, ( acP) = 0. 
ap r 
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P2.24 Using the Euler's chain relation and the reciprocal identity [Further information 2.2] 

P2.26 

Substituting into the given expression for Cp - Cv 

Cr-Cv=-T(ap) (av)' 
av T aT " 

Using the reciprocal identity again 

Cp- Cv = 
T (aV jaT)~ 
(aV jap)T 

For a perfect gas, pV = nRT, so 

(av)' = ("R)' 
aT " p 

and (av) _ nRT 
ap T --y 

so 
- T (nRfp) 2 ~ 

Cr-Cv= 2 =~ -nRT /p 

(a) V= V(p,T);hence,dV= (av) dp+ (av) dT 
ap T aT " 

Likewisep=p(V,T),sodp= (ap) dV+(ap) dT 
av T aT v 

(b) We use a= ( ~) ( :~) P [2.43] and KT =- ( ~) ( ~~) T [2.44] and obtain 

dlnv=.!..dv=(.!..)(av) dp+(.!..)(av) dT=I-KTdp+adTI. v v ap T v aT " 

Likewise d In p = dp = ~ ( ap) dV + ~ ( ap) dT 
P p av T P aT v 

We express ( ap) in terms of Kr: 
av T 

so (
ap) ___ 1 
aV T- KTV 

(
ap) . We express - m terms of KT and a 
aT v 

so 
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so d lnp = -~ + adT = _I_ (adT- dV) 
pKr V pKr pKr V 

w =- {v' pd V = -nRT {v' ~ + n2a {v' dV~ 
lv1 lv1 V- nb lv1 

=- nRT In ( Vz- nb) - n'a (_!_- _!_) 
v,- nb Vz v, 

By multiplying and dividing the value of each variable by its critical value we obtain 

w = -nR x (!...) T, x In ((Vz(Vo)- (nbfV,))- (n'a) x (V,- V,) 
T, (V,fV,) - (nbfV,) V, Vz v, 

T V Sa 
T, =T,, V, = V,, T, = 27Rb' V, = 3nb [Table 1.7] 

w =- (8na) X (T,) x In (V,,z- (1/3))- ("a) x (-' -_I ) 
27b v,,,- (1/3) 3b v,,, v,,, 

The van der Waals constants can be eliminated by defining Wr = 3bwja, then w = awrf3b and 

8 (V,,z- (1/3)) ( I I ) 
w, = - 9nT, In V,,, _ (l/3) - n v;:;-- \!,:;-

Along the critical isotherm, Tr = I, Vr.l = I, and Vr,2 = x. Hence 

Use of Euler's chain relation [Further information 2.2] yields 

(
8Hm) = (8Um) + [B(pVm)J = (8Um) (8Vm) + [8(pVm)J 
8p T 8p T 8p T 8Vm T 8p T 8p T 

Use the vi rial expansion of the van der Waals equation in terms of p. (See the solution to Problem 1.9.) 
Now let us evaluate some of these derivatives. 

(
8Um) (au) a -- = - = rrr = 2 [Exercise 2.30] 
8Vm T 8V T Vm 

pVm =RT[l + RIT (b- ;T)p+ . . J 
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[
a(pVm)J "'b- _'!__ 

ap T RT' (
avm) _ RT 
ap T ~ -P' 
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Substituting (aH) "'(--"z) x (- R;) + (b- _<!__)"' -aR~ + (b _ _<!__) 
ap T V, p RT (pVm) RT 

Since (aH ;ap)r is in a sense a correction term, that is, it approaches zero for a perfect gas, little error 
will be introduced by the approximation, (pVm)2 = (RT)2 

Thus (aHjap)7 "' (-ajRT) + (b- (ajRT)) = (b- (2ajRT)) and I'= ((2ajRT)- b)/Cp.m 

Ci - _!_ (a v) - 1 
[reciprocal identity, Further inFormation 2.2] 

- V aT P- V(aTjaV)p '' 

1 
a = - x [Problem 2.31] 

V (T j(V -nb))- (2nafRV3 ) x (V -nb) 

(RV2 ) x (V- nb) 
= 

(RTV')- (2na) x (V- nb)2 

KT = -_I_ (a V) = -I (reciprocal identity] 
v ap 7 v (ap;av) 7 

1 1 
KT = -- x [Problem 2.31] 

V ( -nRT f(V- nbf) + (2n2ajV3) 

V 2(V- nb) 2 

= 
nRTV3 - 2n2a(V - nb)2 

Then KT/ct = (V- nb)fnR, implying that KrR = a(Vm- b) 

Alternatively, from the definitions of a and KT above 

-(av;ap)7 -I 
---;-;'-;-;-;'::-;;;:'-'- = [reciprocal identity] 
(av ;aT)" (ap;av) 7 (av ;aT)" 

=(aT) [Euler chain relation] 
ap v 

V- nb 
= -- [Problem2.31], 

nR 

a(V- nb) KTR = _:_ __ _:_ 
n 

Hence, KrR = a(Vm- b) 

P2.34 Work with the left-hand side of the relation to be proved and show that after manipulation using the 
general relations between partial derivatives and the given equation for (aU jaV)r, the right-hand side 
is produced. 
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(aH) (aH) (av) . - = - - [changeofvanable] ap r av r ap r 
(a(U + pV)) (av) = - [definition of H] av r ap r 

(au) (av) (a(pV)) (av) 
= aV T ap 1.+ a\f T ap T 

= !T Gnv -pj C~)T + c~:t [equation for (:~)J 

=T(:;)v(~~)r -pC~)r +V+p(~~)r 
= T (:;) v ( ~~) T +V = ( ~) + V [chain relation] 

av " 
= -T(av) + V [reciprocal identity] 

aT " 

RT 
so 

M 

p 

p 
hence 

5 ((8.314JK- 1 mol- 1 )x(298K)x~) 112 
1 -II 

For argon, y =-,soc= 
1 

= 322m s 
3 39.95 x I0-3 kg mol 

Solutions to applications 

P2.38 (a) (i) One major limitation of Hooke's law is that it applies to displacements from a single equilibrium 
value of the end-to-end distance. In fact, if a DNA molecule or any other macromolecular chain 

that is susceptible to strong non-bonding intramolecular interactions is disturbed sufficiently 
from one equilibrium configuration, it is likely to settle into a different equilibrium configuration, 

a so-called "local minimum" in potential energy. Hooke's law is a good approximation for 
systems that have a single equilibrium configuration corresponding to a single minimum in 

potential energy. Another limitation is the assumption that it is just as easy (or as difficult) to 

move the ends away from each other in any direction. In fact, the intramolecular interactions 
would be quite different depending on whether one were displacing an end along the chain or 

outward from the chain. (See Figure 2.4.) 

Figure 2.4 
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(ii) Work is dw = -Fdx = +kpdx. This integrates to 

0.9 

0.8 

0.7 

\ I 

\ I 
\ I 

0.6 

-" -0.5 0 
~ 

0.4 

\ I 
\ I 

0.3 

0.2 \ I 
0.1 

0 

\.. / 
\.. ......._ / 

v 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

displacement Figure2.5 

(b) (i) One obvious limitation is that the model treats only displacements along the chain, not 
displacements that take an end away from the chain. (See Figure 2.4.) 

(ii) The displacement is twice the persistence length, so 

X= 21, II= 2, v = n/N = 2/200 = 1/100 

kT (l+v) (1.381xi0-
23

JK-
1
)(298K) (1.01) I -16 I and IFI =-In -- = 9 In - = 9.1 x 10 N 

21 I - v 2 x 45 x 10 m 0.99 

(iii) Figure 2.6 displays a plot of force vs. displacement for Hooke's law and for the one-dimensional 

freely jointed chain. For small displacements the plots very nearly coincide. However, for large 
displacements, the magnitude of the force in the one-dimensional model grows much faster. In 
fact, in the one-dimensional model, the magnitude of the force approaches infinity for a finite 

displacement, namely a displacement the size of the chain itself (I vi = 1). (For Hooke's law, 
the force approaches infinity only for infinitely large displacements.) 

(iv) Workisdw=-Fdx= -In -- dx= --In -- dv kT (l+v) kNT (l+v) 
21 1-v 2 1-v 
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This integrates to 

IV= f'' kNT In ( 
1 

+ ") dv = kNT [''[In (I+ v) -In (I- v)]dv 
lo 2 I- v 2 lo 
kNT I'' = 2[(1 + v) In (I+ v)- v +(I - v) In (I - v) + v] 0 

kNT 
= -

2
-[(1 + vr) In (I+ vr) +(I- vr) In (I - vr)] 

(v) The expression for work is well behaved for displacements less than the length of the chain; 
however, for vr = ±I, we must be a bit more careful, for the expression above is indetenninate 

at these points. In particular, for expansion to the full length of the chain 

kNT 
IV= lim -[(1 + v) ln(l + v) +(I- v) In (I- v)] 

LJ-Io] 2 

kNT [ J kNT [ In( I - v) J = - (I + I) In (I+ I)+ lim (I - v) In (I - v) =- 2In 2 + lim 1 2 v-+l 2 v--+1 (1-lJ) 

where we have written the indetenninate term in the form of a ratio in order to apply I'Hospital's 

rule. Focusing on the problematic limit and taking the required derivatives of numerator and 

denominator yields: 

. ln(l - v) . -(I- v)-1 
hm -:-:-'-:-7 = hm -7=---..:..C.,, = lim[-(1- v)] = 0 
1'--~'1(1-v)-1 1.1-~o!{l-v)2 v-+1 

Therefore IV = k7" (2ln 2) = I kNT In 21 
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(c) For v « I, the natural log can be expanded: In (I+ v)"" v and In (I - v)"" -v. Therefore 

IFI = -In -- = -[ln(l + v) -ln(l - v)] kT (I+") kT 
21 1-v 21 

kT vkT nkT xkT 
""-[v- (-v)] =- =- =-

21 I Nl Nt2 

(d) Figure 2.6 above already suggested what the derivation in part (c) confirms: that the one~dimensional 

chain model and Hooke's law have the same behavior for small displacements. Part (c) allows us to 

identify kT /NP as the Hooke's law force constanl. 

The needed data are the enthalpy of vaporization and heat capacity of water, available in the Data sectioiZ. 

Cp.m(H20, I) = 75.3 J K- 1 mol- 1 t.,.pH"(H20) = 44.0 kJ mol-l 

65 kg 3 
n(H,Q) = 1 = 3.6 x 10 mol 

- 0.018kgmol 

From 6.H = nCp,m 6. T we obtain 

t.H 1.0 x 104 kJ 
"T = -- = -:-:-,.-:-::----,:..c:_-::-'::'::-::::':--:-:::--cl-,.--,-,-1 = I + 3 7 K I 

nCp,m (3.6 x 1Q3 mol) x (0.0753 kJ K mol ) 

COMMENT. This estimate would correspond to about 30 glasses of water per day, which is much higher 

than the average consumption. The discrepancy may be a result of our assumption that evaporation of water 

is the main mechanism of heat loss. 

P2.42 (a) qv = -nt.,U0
; hence 

(i) The complete aerobic oxidation is 

C6HI206(s) + 60,(g)--> 6C02(g) + 6H20(I) 

Since there is no change in the number of moles of gas, 6.rH = b.rU [2.21] and 

t.,lt' = t.,u" = 1-2802 kJ mol- 1 I 

-qv -Ct.T -MCt.T 
(ii) b.c U0 = -- = --- = where m is sample mass and M molar mass 

II 11 111 

0 (180.16g moi- 1
) x (641 J K- 1) x (7.793 K) 1 -I 1 

so t.,U =- =. -2802 kJ mol . 
0.3212g 

(iii) t.,H0 = 6t.rH0 (CO,, g)+ 6t.rH"(H20, I) - LlrH"(C6HI20o, s) - 6t.rH"(02, g) 
so LlrH"(CoH1206, s) = 6t.rH"(C02, g) + 6t.rH 0 (H20, I) - 6LlrH"(O,, g) - t.,H" 
LlrH"(CoH1206,s) = [6(-393.51) +6(-285.83)- 6(0)- (-2802)] kJmol- 1 

=1-1274 kJ mol- 1 1 
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(b) The anaerobic glycolysis to lactic acid is 

!>,He= 2!>rH0 (lactic acid)- t>rH0 (glucose) 

= [(2) x (-694.0)- (-1274)} kJ mol-l = -114kJ mol- 1 

Therefore, aerobic oxidation I is more exothermic by 2688 kJ mol-l I than glycolysis. 

P2.44 The three possible fates of the radical are 

(a) rert-C4H9 ~ sec-C4H9 

(b) rert-C4H9 --> C3H6 + CH3 
(c) tert-C4H9--> C2H4 + C,H, 

The three corresponding enthalpy changes are 

(a) t>,H0 = !>rH0 (sec-C4H9) - t>rH0 (lert-C4H9) = (67.5 - 51.3) kJ mol- 1 

= 116.2kJ mol-l I 

(b) !>,He= !>rW(C3H6) + !>rH0 (CH3)- l>rH0 (tert-C4H9) 

= (20.42 + 145.49- 51.3) kJ mol-l = 11146 kJ mol-l I 

(c) !>,He= t>rW(C2H4) + !>rW(C,Hs)- t>rW(Ierr-C4H9) 

= (52.26 + 121.0- 51.3) kJ mol-l = l122.0 kJ mol- 1 I 

P2.46 (a) The Joule-Thomson coefficient is related to the given data by 

11 = -(1/Cp)(aH ;ap)r = -( -3.29 x 103 J mol- 1 MPa- 1 )/( 110.0 J K- 1 mol- 1) 

=129.9KMPa- 1 l 

(b) The Joule-Thomson coefficient is defined as 

Assuming that the expansion is a Joule-Thomson constant-enthalpy process, we have 

!> T = Jl.l>p = (29.9 K MPa- 1
) X [(0.5 - 1.5) X w-l MPa} = 1-2.99 K I 
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3 The Second Law 

Answers to discussion questions 

03.2 The device proposed uses geothermal heat (energy) and appears to be similar to devices currently in 
existence for heating and lighting homes. As long as the amount of heat extracted from the hot source 

(the ground) is not less than the sum of the amount of heat discarded to the surroundings (by heating 

the home and operating the steam engine) and of the amount of work done by the engine to operate 
the heat pump, this device is possible; at least, it does not violate the first law of thermodynamics. 

However, the feasibility of the device needs to be tested from the point of view of the second Jaw as 
well. There are various equivalent versions of the second law; some are more directly useful in this case 

than others. Upon first analysis, it might seem that the net result of the operation of this device is the 
complete conversion of heat into the work done by the heat pump. This work is the difference between 

the heat absorbed from the surroundings and the heat discharged to the surroundings, and all of that 
difference has been converted to work. We might, then, conclude that this device violates the second 

law in the form stated in the introduction to Chapter 3; and therefore, that it cannot operate as described. 
However, we must carefully examine the exact wording of the second law. The key words are "sole 

result." Another slightly different, though equivalent, wording of Kelvin's statement is the following: 
"It is impossible by a cyclic process to take heat from a reservoir and convert it into work without at 

the same time transferring heat from a hot to a cold reservoir." So as long as some heat is discharged to 

surroundings colder than the geothermal source during its operation, there is no reason why this device 
should not work. A detailed analysis of the entropy changes associated with this device follows. 

Environment at 7~ 

Pump 

t 
Flow 

Flow 

.. ground" water at Th 

Figure 3.1 Cv and C1, are the temperature dependent heat capacities of water 
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Three things must be considered in an analysis of the geothermal heat pump: Is it forbidden by the first 
law? Is it forbidden by the second law? Is it efficient? 

l:!..Etot = flEwatcr + ll.Eground + LlEcnvironment 

6.Ewatcr = 0 

Adding terms, we find that 6.Eto1 = 0 which means that the first law is satisfied for any value of Th 

and Tc . 

.6.S10t = L).Swatcr + 6-Sground + .6.Senvironmcnl 

LlSwatcr = 0 

qcnvironmcnt 
flSenvironment = Tc 

Adding terms and estimating that Cp(Th) "' Cp(T,) = Cp. we find that 

This expression satisfies the second law (.6.Stot > 0) only when Th > Tc. We can conclude that, if the 
proposal involves collecting heat from environmentally cool ground water and using the energy to heat a 

home or to perform work, the proposal cannot succeed no matter what level of sophisticated technology 

is applied. Should the "ground" water be collected from deep within the Earth so that Th > Tc. the 
resultant geothermal pump is feasible. However, the efficiency, given by eqn 3.1 0, must be high to 

compete with fossil fuels because high installation costs must be recovered during the lifetime of the 

apparatus. 

with Tc ~ 273 K and Th = 373 K (the highest value possible at I bar), Erev = 0.268. At most, about 
27% of the extracted heat is available to do work, including driving the heat pump. The concept works 

especially well in Iceland where geothermal springs bring boiling water to the surface. 

03.4 All of these expressions are obtained from a combination of the first law of thermodynamics with the 

Clausius inequality in the form TdS ::::_ dq (as was done at the start of Justification 3.2). It may be 

written as 

-dU- p,dV + dw,,, + TdS 0:: 0 

where we have divided the work into pressure-volume work and additional work. Under conditions of 

constant energy and volume and no additional work, that is, an isolated system, this relation reduces to 

dS 0::0 
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which is equivalent to 6.S101 = 6.Suniversc 2: 0. (The universe is an isolated system.) 

Under conditions of constant temperature and volume, with no additional work, the relation reduces to 

dA ~ 0, 

where A is defined as U - TS. 

Under conditions of constant temperature and pressure, with no additional work, the relation reduces to 

dG ~ 0, 

where G is defined as U + pV - TS = H - TS. 

In all of the these relations, choosing the inequality provides the criteria for spontaneous change. 

Choosing the equal sign gives us the criteria for equilibrium under the conditions specified. 

03.6 See the solution to Exercise 2.30(a) and Example 3.6, where it is demonstrated that 1r7 = afV~ for a 
van der Waals gas. Therefore, there is no dependence on b for a van der Waals gas. The internal pressure 

results from attractive interactions alone. For van der Waals gases and liquids with strong attractive 
forces (large a) at small volumes, the internal pressure can be very large. 

03.8 The relation (8Gj8T)p = -S shows that the Gibbs function of a system decreases with Tat constant P 
in proportion to the magnitude of its entropy. This makes good sense when one considers the definition 

of G, which is G = U + pV- TS. Hence, G is expected to decrease with Tin proportion to S when p 
is constant. Furthennore, an increase in temperature causes entropy to increase according to 

E3.1(b) 

E3.2(b) 

!!.S = [ dq"v fT 

The corresponding increase in molecular disorder causes a decline in the Gibbs energy. (Entropy is 

always positive.) 

Solutions to exercises 

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated. 

!!.S = t~" = 'f: 
(a) SOx I0

3
J I I l!.S = = 1.8 X 102 J K- 1 

273K · · 

(b) SOx I0
3

J I I l!.S = = I.S X 102 J K- 1 

(70 + 273) K · 

At 2SO K, the entropy is equal to its entropy at 298 K plus LiS where 

!!.S = f dq"' = f Cv.m dT = Cv In Tr 
T T ,m Ti 
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so S = 154.841 K- 1 mol- 1 + [(20.786- 8.3145)1 K- 1mol- 1] x In~!~~ 

S = 1152.651 K- 1 mol- 1 I 

However the change occurred !::lS has the same value as if the change happened by reversible heating at 

constant pressure (step I) followed by reversible isothermal compression (step 2) 

For the first step 

'S _ J dq," _ J Cp.m dT _ C I Tr 
UJ- T- T - p,mnTi 

(
7) (135+273)K 

t>S1 = (2.00mol) x 2 x (8.31451K-l mol- 1
) x In (

2
S +

273
)K = 18.31K-l 

and for the second 

Vr Pi 
where qrev = -w = J pdV = nRT In- = nRTin-

vi Pr 

Pi I 1 1.50atm I 
so t>S2 = nR In - = (2.00 mol) x (8.3145 1 K- mol- ) x In = -25.61 K-

Pr 7.00atm 

M=(l8.3-2s.6)1K_, =I-7.31K-'I 

The heat lost in step 2 was more than the heat gained in step I, resulting in a net loss of entropy. Or the 

ordering represented by confining the sample to a smaller volume in step 2 overcame the disordering 

represented by the temperature rise in step I. A negative entropy change is allowed for a system as long 

as an increase in entropy elsewhere results in 6.S101at > 0. 

q = qrcv = 0 [adiabatic reversible process] 

!>S = [ d~" = @] 

!>U=nCv.m~>T= (2.00mol) x (27.51K- 1 mol- 1) x (300-250)K 

= nso1 = 1 +2.75 k1 1 

IV= t>U - q = 2.75 k1 - 0 = 12.75 k1 I 

6.H = nCp,m 6. T 

Cp.m = Cv.m +R = (27.51K- 1 mol-l +8.3141K- 1 mol- 1) = 35.8141K- 1 mol-l 

So 6H = (2.00 mol) x (35.814 1 K- 1 mol-l) x (+50 K) = 3581.41 = 13.58 k1 I 
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Since the masses are equal and the heat capacity is assumed constant, the final temperature will be the 
average of the two initial temperatures, 

The heat capacity of each block is 

C = mCs where Cs is the specific heat capacity 

so t>H (individual) = mC,t>T = 1.00 x 103 g x 0.4491 K- 1 g- 1 x (±87.5 K) = ±39 k1 

These two enthalpy changes add up to zero: I I:::.H10t = 0 I 

(a) 

(b) 

t>S = mC, In ( i} 200 oc = 473.2 K; 25 °C = 298.2 K; 112.5 oc = 385.7 K 

(
385.7) -

t>S 1 = (1.00 x !03 g) x (0.4491K-I g- 1) x In 
298

_
2 

= 115.51K- 1 

t>S2 = (1.00 x 103 g) x (0.4491 K- 1 g- 1
) x In(!~~:~)= -91.80Z1K- 1 

6.St01ol = 6.S1 + t>Sz = 1241 K- 1 I 

q; 0 [adiabatic] 

(
l.Olxl0

5
Pa) 2 (1m

3
) w = -p"t>V = -(l.Satm) x x (IOO.Ocm) x (!Scm) x 6 3 atm 10 em 

= -227.21 = 1-2301 1 

(c) t>U = q + w = 0- 2301 = 1-230 J I 

(d) t>U = nCv.mt>T 

t>U -227.21 
6. T = -- = -,-----,-------=::__:::-=-:--c--:-c-

"Cv.m (l.Smol) x (28.81K 1 mol 1
) 

=I-5.3K I 

(e) Entropy is a state function, so we can compute it by any convenient path. Although the specified trans
formation is adiabatic, a more convenient path is constant-volume cooling followed by isothermal 
expansion. The entropy change is the sum of the entropy changes of these two steps: 

t>S = 6.S1 + 6.S2 = nCv.m In (i) + nRin ( ~) [3.19 and 3.13] 

Tr = 288.15 K- 5.26 K = 282.9 K 

nRT (l.Smol) x (8.206 x !0-2 dm3 atmK- 1 mol-t) x (288.2K) 
~ = --- = ~----~~--------~~----------~--~----~ 

p; 9.0atm 
- 3 = 3.942 dm 
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( 
ldm

3 
) Vr = 3.942 dm3 + (100 cm2) x (IS em) x 3 IOOOcm 

= 3.942 dm3 + !.5 dm3 = 5.44 dm3 

tlS = (l.Smol) x {(28.8JK- 1 mol- 1
) x In ( 282·~) 

288.2 

+(8.3!4JK- 1 mol- 1
) x ln(

5
·
44 

)} 
3.942 

= !.5 mol(-0.5346 J K- 1 mol- 1 + 2.678 J K- 1 mol- 1) = 13.2 J K- 1 I 
- tl,pH - 35.27 X !03 J mol-l - - -I -I -I I 

(a) tl,pS-~- (
64

_1 + 273 _JS)K -+l04.58JK - !04.6JK 

(b) If vaporization occurs reversibly, as is generally assumed 

6.Ssys + LlSsur = 0 SO LlSsur = l-1 04.6 J K-l I 

(a) tl,S"' = S~(Zn2+, aq) + S~(Cu, s) - S~(Zn, s)- S~(Cu2+, aq) 

= [ -112.1 + 33.15- 4!.63 + 99.6] J K- 1 mol-l = r~--2-l-.0-J_K ___ ,m_o_l __ ,..,, I 

(b) tl,S"' = 12S~(C02, g)+ !IS~(H20, l)- S~(C,2H22011, s)- 12S~(02,g) 

= ((12 X 213.74) +(II X 69.91)- 360.2- (12 X 205.14)] JK-I mol-l 

=I +512.0JK- 1 mor- 1 I 
(a) tl,H"' = tlrlt'(Zn2+,aq)- tlrlt'(Cu2+,aq) 

= -153.89-64.77 kJ mol- 1 = -218.66kJ mol- 1 

tl,G"' = -218.66 kJ mol- 1 - (298.15 K) x (-2l.OJ K- 1 mol- 1) = 1-212.40 kJ mol- 1 I 

(b) tl,It' = tl,It' = -5645kJmol- 1 

tl,G"' = -5645 kJ mol- 1 - (298.15 K) x (512.0 J K- 1 mor-') = 1-5798 kJ mol- 1 I 

E3.1 O(b) (a) tl,G"' = tlrG"' (Zn2+, aq) - tlrG"' (Cu2+, aq) 

= -147.06- 65.49 kJ mol- 1 = 1-212.55 kJ mol- 1 I 

(b) tl,G"' = l2tlrG"' (C02, g) + II tlrG"'(H20, I) - tlrG"'(C,2H22011, s) - 12tlrG"' (02, g) 

= (12 X (-394.36) + [[X (-237.13)- (-[543)- [2 X 0] kJ mo[-l 

= l-5798kJmol- 1 I 

COMMENT. In each case these values of b.rGa. agree closely with the calculated values in Exercise 3.9(b). 
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CO(g) + CH,OH(l) -. CH,COOH(l) 

t>,H" = L vt>rH"- L vt>rH" [2.32] 
Products Reac1ants 

= -484.5kJmoi- 1 - (-238.66k1mol- 1)- (-110.53kJmol- 1) 

= -135.3Ik1moi- 1 

Products Reactants 

= 159.81K- 1 moi- 1 -126.81K-1 moi- 1 -197.671K- 1 moi- 1 

= -164.671K- 1 moi- 1 

t>,G" = t>,H" - T t>,S" 

= -135.3IkJmoi- 1 - (298K) x (-164.671K- 1 mol- 1) 

= -135.3IkJmol- 1 +49.072kJmol- 1 =l-86.2k1mol-'l 

E3.12(b) The formation reaction of urea is 

C(gr) + ~O,(g) + N,(g) + 2H,(g)-. CO(NH,),(s) 

The combustion reaction is 

CO(NH,),(s) + ~O,(g)-. CO,(g) + 2H,O(I) + N,(g) 

t>,H = t>rfi"(CO,. g)+ 2t>rfi"(H,O. I) - t>rli"(CO(NH2),. s) 

t>rli"(CO(NH,),. s) = t>rli"(CO,, g)+ 2t>rli"(H,O, I) - t>,H(CO(NH2),, s) 

= -393.51 k1 mol-' + (2) x ( -285.83 kJ mol-l) - ( -632 kJ mol-l) 

= -333.17 kJ moi- 1 

t>rs" = s,::(CO(NH,),, s) - s,::(c. gr) - ~s,::(o,, g) - s,::(N,, g) - 2s,::(H2, g) 

= 104.601 K- 1 mol-l -5.7401 K- 1 mol-l - ~(205.1381 K- 1 mol- 1) 

- 191.61 1 K- 1 moi- 1 - 2( 130.6841 K- 1 mol-l) 

= -456.6871 K- 1 moi- 1 

t>rG" = t>rH" - T t>rS" 

= -333.17k1moi- 1 - (298K) x (-456.6871K- 1 mol- 1) 

= -333.17k1 mol- 1 + 136.093 kJ mol-l 

= l-197kJmol-'l 
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(a) t.S(gas) = 11Rin (V') [3.13] = ( 
21 

g 
V; 39.95gmol 1

) x (8.3141K- 1 moi- 1)In2 

= 3.0291K-' = 13.01K-'I 

t.S(surroundings) = -t.S(gas) = 1-3.01 K- 1 I [reversible] 

t.S(total) =@] 

(b) L'>S(gas) =I +3.01 K- 1 I [Sis a state function] 

6.S(surroundings) =@][no change in surroundings] 

t.S(total) =I +3.01 K- 1 I 

(c) q," = 0 so t.S(gas) =@] 

6.S(surroundings) =@][No heat is transfered to the surroundings] 

L'>S(total) =@] 

C3Hs(g) + 50,(g)-> 3CO,(g) + 4H,O(l) 

t.,G" = 3t>rG"(CO,, g) + 4t>rG"(H,O, I) - <'>rG .. (C,Hs, g) - 0 

= 3( -394.36 kJ mol-l) + 4( -237.13 kJ mol-l) - I ( -23.49 kJ mol-l) 

= -2108.llk1mol- 1 

The maximum non~expansion work is 12108.11 kJ mol- 1 I since I Wactd [ = [6.0] . 

T, 500K ~ 
E3.15(b) (a) E = 1-- [3.10) = 1---=~ 

Th 1000 K r:-:c:-:-:o 

E3.16(b) 

E3.17(b) 

(b) Maximum work= olqhl = (0.500) x (1.0 k1) =I 0.50 k1 I 
(c) Emax = Erev and ]Wmaxl = lqh[-[qc,minl 

lq,,m;nl = 1%1- lwm,.l 

= 1.0 k1- 0.50 k1 

=I 0.5k1 I 

t.G = nRT In(;:) [3.56] = nRT ln ( ~;) [Boyle's law] 

t.G = (2.5 x w-3 mol) x (8.314 1 K- 1 mol- 1
) x (298 K) x In ( ,'~) = 1-2.01 I 

( aG) = -S [3.50]; hence (aGr) = -Sr, and (aG;) = -S; 
ar P ar P ar r 

<'>S=Sr-S;=-(ac,) +(aG;) =-(a(Gr-G;)) 
aT , aT , aT , 

= -(~), = - 8

8
T ( -7311+4281 x f) 

= 1-42.81 K- 1 I 
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dG = -S dT + V dp [3.49]; at constant T. dG = V dp; therefore 

1
1'r 

l!.G= Vdp 
Pi 

The change in volume of a condensed phase under isothermal compression is given by the isothermal 
compressibility (eqn 2.44). 

Kr =- - = 1.26 x 10-9 Pa- 1 1 (av) 
v ap , 

This small isothermal compressibility (typical of condensed phases) tells us that we can expect a small 

change in volume from even a large increase in pressure. So we can make the following approximations 

to obtain a simple expression for the volume as a function of the pressure 

~I (V-V;)- I (V-V;) Ky....,..- --- -- --
V p-p; V; p 

so V = V;(l - Krp). 

where Vi is the volume at 1 atm, namely the sample mass over the density, mj p. 

/,

lOOMPa m 
l!.G= -(1-Krp)dp 

IOOkPa P 

Ill (!,IOOMPo /,tOOMP' ) 
=- dp-Kr pdp 

P IOOkPa IOOkPa 

111 ( IIOOMPo I 'IIOOMP') 
-- p - -Krp-

P IOOkPa 2 IOOkPa 

= 
25

g J (9.99 X J07 Pa- ~(1.26 X J0-9 pa- 1
) X (1.00 X J0 16 Pa2)) 

0.791 gem 2 

= 31.6cm3 x (~)
3 

x 9.36 x 107 Pa 
IOOcm 

= 2.96 X 103 J = 13.0 kJ I 

E3.19(b) l!.Gm = Gm.r- Gm.i = RT In (~:) [3.56] 

= (8.3141 K- 1 mol- 1) x (323 K) x In (
252

·
0

) = 12.71 kl mol- 1 I 
92.0 

E3.20(b) For an ideal gas, G~ = ~ + RT In(~:) [3.56 with Gm = G~] 

But for a real gas, G111 = ~1 + RT In (-;.e) [3.58] 

So G.,- G~ = RT In[. [3.58 minus 3.56]; [. = </> 
p p 

= RTln<P = (8.314JK- 1 mol- 1) x (290K) x (ln0.68) =l-0.93klmoi- 1 1 
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b.G = nVmb.P [3.55] = V t>p 

b.G = ( 1.0 dm3) X ( l m' 3) X (200 X l 03 Pa) = 200 Pa m3 = 1200 J I 
l03 dm 

b.Gm = RTln (p') = (8.314 J K- 1 mol- 1) x (500 K) x ln ( lOO.OkPa) =I +2.88 kJmol- 1 I 
p; 50.0kPa 

Solutions to problems 

Solutions to numerical problems 

b.Sm = {T' Cp.mdT [3.18] = {T' (a+ bT) dT =a In (T') + b(T,- T,) 
lr1 T }r1 T T, 

a= 91.47 JK- 1 mol-l, b = 7.5 X w-2 JK-2 mol- 1 

t>Sm = (91.47 J K- 1 mol-l) x ln G~~ ~) + (0.075 J K-2 mol-l) X (27 K) 

=Ito.? K- 1 mot- 1 I 

P3.4 First, determine the final state in each section. In section B, the volume was halved at constant temper

ature, so the pressure was doubled: PB.f = 2PB.i· The piston ensures that the pressures are equal in both 

chambers, so PA.f = 2ps,i = 2PA.i· From the perfect gas law 

PA.fVA.f (2pA,;)x(3.00dm3
)_

300 
T _

9
00K = J - . SO Af- . 

PA,;VA,; {pA,;) x (2.00dm) ' 

(a) !:>SA = nCv,m ln ( TA.r) [3.19] + nR In ( VA.r) [3.13] 
TA.i VA,i 

b.SA = (2.0mol) x (20JK- 1 mol- 1) x ln3.00 

+(2.00mol) x (8.3l4JK- 1 mol- 1) x ln 
3 (

3.00dm
3

) 

2.00dm· 

=150.7JK-'I 

(
Vsr) _ 1 _ 1 (l.00dm

3
) t>Ss =nRln -· = (2.00mol) x (8.3l4JK mol ) x ln 

3 Vs.; 2.00 dm· 

=l-ti.5JK-ll 

(b) The Helmholtz free energy is defined as A = U - TS [3.29]. Because section B is isothermal, 
b.U = 0 and b.{TS) = T b.S, so 

b.As = -Tsb.Ss = -(300K)(-li.5J K- 1
) = 3.46 x 103 J =I +3.46 kJ I 
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In Section A, we cannot compute fl.{TS), so we cannot compute 6.U. 6.A I is indetenninate I in 

both magnitude and sign. We know that in a perfect gas, U depends only on temperature; moreover, 
U(T) is an increasing function ofT, for au;aT=C (heat capacity), which is positive; since 

t;T > 0, t;U > 0 as well. But !1(TS) > 0 too, since both the temperature and the entropy increase. 
(c) Likewise, under constant-temperature conditions 

!1G = !1H- Tt1S 

In Section B, ll.Ha = 0 (constant temperature, perfect gas), so 

I'>Gs = -Tst1Ss = -(300 K) x (-11.5J K- 1
) = 13.46 x 103 J I 

6.GA is I indeterminate I in both magnitude and sign. 

(d) t.S(total system)= !1SA + !1Ss = (50.7- 11.5)J K- 1 =I +39.2J K- 1 I 

If the process has been carried out reversibly as assumed in the statement of the problem we 

can say 

I'>S(system) + !1S(surroundings) = 0 

Hence, I'>S(surroundings) = I-39.2J K- 1 I 

Question. Can you design this process such that heat is added to section A reversibly? 

q IV !1U = !1H t;S ll.Ssur .6-Siot 

Path (a) 2.74 kJ -2.74kJ 0 9.13JK-I -9.13JK-I 0 
Path (b) 1.66 kJ -1.66 kJ 0 9.13JK- 1 -5.53JK-t 3.60JK-I 

Path (a) 

w = -nRT!n (~) [3.13] = -nRT!n (;;) [Boyle's law] 

= -(1.00mol) x (8.314J K-l mol- 1) x (300K) X In = -2.74 X 10 J (
3.00atm) 3 

1.00 atm 

= 1-2.74 kJ 1 

t;H = !1U =@][isothermal process in perfect gas] 

q = t.U - \V = 0- ( -2.74 kJ) =I +2.74 kJ I 

q,, 2.74 X 10
3

J I 'I 
t;S = T [isothermal] = 

300 
K = +9.13 J K-

~S101 =@][reversible process] 

b.S100 = !1S'"' = I'>S101 - I'>S = 0- 9.13 J K- 1 = 1-9.13 J K- 1 I 
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Path (b) 

w = -p"(Vr- V;) = -p" ('-'R_T- _nR_T) = -nRT (p_,_, - p_,_') 
Pr Pi Pr Pi 

( 
1.00 atm 1.00 atm) 

= -(1.00mol) x (8.3141 K- 1) x (300K) X - .,.-,-
0

,----cc 
l.OOatm 3. Oatm 

= -1.66 X 103 1 = 1-1.66 k1 I 

~H = l:!.U =@][isothermal process in perfect gas) 

q = /',U- w = 0- (-1.66k1) =I +1.66k1 I 

qrcv 2.74 X 103 J I I I 
!',S = T [isothermal]= 

300
K = +9.131K~ 

(Note: One can arrive at this by using q from Path (a) as the reversible path, or one can simply use !J.S 
from Path (a), realizing that entropy is a state function.) 

!',S,"'= q,"' =~= -1.66x 10'1 =I-5.531K-'I 
Tsur Tsur 300 K 

/',SIOI = !',S + !',S,"' = (9.13- 5.53) 1 K- 1 =I +3.601 K- 1 I 

P3.8 ~S depends on only the initial and final states, so we can use 6.S = nCp,m In ~~ [3.19] 

P3.10 

q I 2Rt 
Since q = nCp,m(Tr- T;), Tr = T; + -- = T; + -- [q =ltV= I2Rt] 

nCp.m nCp,m 

That is, !',S = nCp,m In (1 + ~) 
"Cr.m Ti 

500 g 
Since n = 1 = 7.87 mol 

63.5 g mol 

!',S = (7.87mol) x (24.41K- 1 moi- 1) x In (1 + (l.OOA)
2 

x (IOOOQ) x (1 5.0s)) 
(7 .87) x (24.4 1 K 1) x (293 K) 

= (1921K- 1
) x (In 1.27) =1+45.4 1K-'I 

[11=1AVs=IA21"Js] 

For the second experiment, no change in state occurs for the copper hence, 6.S(copper) = 0. However, 
for the water, considered as a large heat sink 

q I 2Rt (l.OOA)2 x (IOOOQ) x (15.0s) I •I 
M(water) = T = T = 

293 
K = +51.2 1 K-

Consider the temperature as a function of pressure and enthalpy: T = T(p, H) 

so dT =(aT) dp+ (aT) dH 
ap H aH r 
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The Joule-Thomson expansion is a constant-enthalpy process (Section 2.12). Hence, 

dT =(aT) dp = JLdp 
ap H 

D.T = f"' JL dp = JLD.p [JL is constant] 
lri 

= (0.21 K atm- 1
) x (l.OOatm- IOOatm) = l-21 K I 

Tr = T; + D. T = (373 - 21) K = 352 K [MeanT = 363 K] 

Consider the entropy as a function of temperature and pressure: S = S(T,p) 

Therefore, dS = (as) dT + (as) dp 
ar " ap r 

Cp 

T C!)r =-(:~\ [Table3.5] 

RT 
For Vm = -(1 + Bp) 

p 

(avm) R - = -(1 +Bp) 
aT " P 

Cpm R 
Then dSm=-' dT--(l+Bp)dp 

T P 
Cp.m R 

or dSm = -- dT- -dp- RBdp 
T p 

Upon integration 

D.Sm = t dSm = Cp.m In G~) -R In e~) -RB(p, -PI) 

= ~Rln ( 352
) -Rln (-

1 
) -R ( 

2 373 100 
0.525atm- 1

) 

363 
x ( -99 atm) 

=I +35.91 K- 1 mol- 1 I 

products reactants 

D.,~(298K) =I x D.rH&(CO,g) + 1 x D.r~(H20,g) -1 x D.r~(C02 ,g) 

= [-110.53- 241.82- ( -393.51)} k1 mol-l =I +41.16 k1 mol -I I 

products reactants 

D.,S"(298K) = 1 X S!<CO,g) + 1 X S~(H,O,g) -I X S!<CO,,g) -1 X S!<H,,g) 

= (197.67 + 188.83-213.74- 130.684) k1 mol- 1 =I +42.081 K- 1 mol- 1 I 
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1
398K 

L>,H"(398 K) = L>,H"(298 K) + L>,Cp dT [2.36] 
_98K 

= L>,H"(298 K) + L>,Cpl>T [heat capacilies conslant] 

l>,Cp = I X c,,.m(CO, g)+ I X Cp.m(H,O, g)- I X Cp.m(C02. g)- I X Cp,m(H2.g) 

= (29.14 + 33.58- 37.11 - 28.824)1 K- 1 mol-l = -3.211 K- 1 moi- 1 

l>,H9 (398K) = (41.16k1 mol- 1) + (-3.211 K- 1 mol- 1) x (lOOK) =I +40.84k1mol-'l 

For each substance in the reaction 

L>Sm = Cp.m In G:) = Cp,m In G~: ~) [3.19] 

Thus 

L>,S
9

(398K)= L>,s"(298K)+ L VJCp.m(J)In(i,)- L VJCp.m(J)In(i.) 
produc\s reactants 

" (398K) = L>,S (298 K) + l>,Cp In 
298 

K 

= (42.01 1 K- 1 moi- 1) + (-3.21 1 K- 1 mol- 1
) In(~) 

= (42.01 - 0.93) 1 K- 1 mol-' =I +41.08 1 K- 1 mol- 1 I 

COMMENT. Both tl.rrf3 and LlrSe- changed little over 100 K for this reaction. This is not an uncommon 

result. 

P3.14 Draw up the following table and proceed as in Problem 3.11. 

T/K 
(Cp.m/T) (1 K-2 mol-l) 

T/K 
(Cp,m/T) (1 K-2 mol-l) 

14.14 
0.671 

100.90 
0.942 

16.33 
0.778 

140.86 
0.861 

20.03 
0.908 

31.15 
1.045 

44.08 
1.063 

183.59 225.10 262.99 298.06 
0.787 0.727 0.685 0.659 

64.81 
1.024 

Plot Cp,m against T(Figure 3.2(a)) and Cp,m/T against T (Figure 3.2(b)), extrapolaling to T = 0 with 
Cp,rn = aT3 fitted at T = 14.14 K, which gives a = 3.36 m1 K- 1 mol- 1• Integration by determining 
the area under the curve then gives 

{298K 
~(298 K)- ~(0) = fo Cp.m dT = 134.4k1 mol- 1 I 

Sm(298 K) = Sm(O) + p.m dT = Sm(O) +1243 1 K -I mol-l I 1
298K C 

o T 



THE SECOND LAW 61 
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P3.16 The Gibbs-Helmholtz equation [3.52] may be recast into an analogous equation involving CJ.G and l:l.H, 

since 

(
aflG) (aGr) (aG;) 
---aT,= aT,- aT, 

and flH = Hr - H; 

Thus, 

(~ fl,G") 
aT T P 

(Ll,G") ( a fl,G") t>,H" 
d -T- = aT -T- P dT [constant pressure]=-~ dT 

fl ( t>,G") = _ {T fl,H" dT 
T h TZ 

"' -Ll,H" f ~; = t>,H" ( ~ - ;, ) [t>,H" assumed constant] 

t>,G"(T) fl,G"(T,) " ( l l ) Therefore, - ~ l:l.rH - - -
T T, T T, 

" T " ( T) '"' Ll,G (T) = -Ll,G (To)+ l-- t>,n (T,) 
Tc Tc 

and so 
T 

= rll,G"(T,) + (1- r)Ll,H"(T,) where r =
T, 

For the reaction 

2CO(g) + Oz (g) --> 2COz (g) 

fl,G" (T,) = 2t>rG" (C02 , g) - 2LlrG" (CO, g) 

= [2 x (-394.36) -2 x (-137.17)] kJmol- 1 = -5l4.38kJmoi- 1 
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D.,H9 (To) = 2D.rH9 (CO,, g)- 2D.rW(CO, g) 

= [2 x (-393.51) -2 x (-110.53)]kJmol- 1 = -565.96kJmoi- 1 

Therefore, since r = 375(298.15 = 1.258 

D.,G 9 (375 K) = {(1.25S) x (-514.38) +(I- 1.25S) x (-565.96)) kJ mol-l 

= 1-501 kJ mol- 1 I 

{" (z- 1) A graphical integration of ln ¢ = Jo -p- dp [3.60] is performed. We draw up the following table 

p(atm 4 7 10 40 70 100 

-2.9 -3.01 -3.03 -3.04 -3.17 -3.19 -3.13 

The points are plotted in Figure 3.3. The integral is the shaded area, which has the value -0.313, so at 
100 atm 

¢ = e-0.313 = 0.73 

and thefugacity of oxygen is 100 atm x 0.73 = 173 atm I 

-2.80 .................................... , ........ .. ...... ····!·· 

E 
~ -2.90 

' ~ -3.00 .... " ....... ~ . " ............... !. ·····~· ........... ·····+· 
'6 

-3.10 j .................. ; ............... ···~··· ...... ····: 

-3.20 l:___,_---'--_,__j~--'---.J:::;:=d::==:::t:::._~ 
0 20 40 60 80 100 

p/atm Figure 3.3 

Solutions to theoretical problems 

Paths A and Bin Figure 3.4 are the reversible adiabatic paths which are assumed to cross at state I. Path 
C (dashed) is an isothermal path which connects the adiabatic paths at states 2 and 3. Now go round the 
cycle ( 1 --> 2, step 1; 2 --> 3, step 2; 3 --> 1, step 3). 



P3.22 

P3.24 

THE SECOND LAW 63 

p 

2 

B A-. 
V Figure 3.4 

Step I t;U, = q, + w, = w, [q, = 0, adiabatic] 

Step 2 6. U2 = qz + wz = 0 [isothermal step, energy depends on temperature only] 

Step 3 t;U3 = q3 + WJ = IVJ [q3 = 0, adiabatic] 

For the cycle 6.U = 0 = WJ + q2 + w2 + w3 or w(net) = w1 + wz + WJ = -qz 

Bur, b..U1 = -l:!.U3 [.6.T1 = -6.Tz]; hence WJ = -w3, and w(net) = wz = -qz, or -w(net) = qz. 

Thus, a net amount of work has been done by the system from heat obtained from a heat reservoir at 

the temperature of step 2, without at the same time transferring heat from a hot to a cold reservoir. 
This violates the Kelvin statement of the Second Law. Therefore, the assumption that the two adiabatic 

reversible paths may intersect is disproven. 

Question. May any adiabatic paths intersect, reversible or not? 

V = (-aG) [3.50] = _RT + B' + C'p + D'p2 

ap r P 
'--------~ 

which is the virial equation of state. 

We start from the fundamental relation 

dU = TdS- pdV [3.43] 

But, since U = U (S, V), we may also write 

dU =(au) dS +(au) dV 
as v av 5 

Comparing the two expressions, we see that 

- -T (au) 
as v- and (au) = -p 

av 5 

These relations are true in general and hence hold for the perfect gas. We can demonstrale this more 

explicitly for the perfect gas as follows. For the perfect gas at constant volume 

dU = CvdT 
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and 

dqrev Cv dT 
dS=--=--

T T 

Then (dU) (au) Cvd T 
dS v = as v = (Cv:T) = T 

For a reversible adiabatic (constant-entropy) change in a perfect gas 

dU =dw= -pdV 

Therefore, ( aU) = - p av s 

(a) 

" = ( ~) X G~) p [3.8]; KT =- (~)X (~~)T (3.14) 

- = - [Maxwell relation] (
as) (ap) . 
av T aT v 

( ap) - - ( av) ( ap) [Euler chain relation, Further infonnation 2.2] aT v- aT r av T 

= (~) P [ . I'd . F I . ·' . 2 2] 

(
a V) rectproca I enuty, uri ler UlJOfnlQTlOn . 

ap T 

(av) =(aT) [Maxwell relation] 
as " ap s 

. G!)T . 
[Euler cham] = - (as) [reciprocal] 

aT " 
First treat the numerator: 

( aS) =- (av) [Maxwell relation]= -aV ap T aT p 

As for the denominator, at constant p 

dS = (as) dT and 
aT " 

dS = dq," = dH = Cp dT [d dH] T T T qp = 
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Therefore, - = __!!_ and - = --( as) c (av) t§jTV 
aT p T as p Cp 

( ap) =-(aT) [Maxwell relation] 
as v av s 

- (:~)s =(as) (av) [Euler chain]= 
aT v as r 

( as) 
av . 

(
aS) T [reCiprocal] 

aT v 

G~)v . -(*)r(~)P . 
(~) (au) [Maxwell relation]= (~) (au) [Euler cham] 

au v aT v au v aT v 

-(~)P(~)v 
= (~~)rC~)v 

[reciprocal identity, twice] = I aT I [ (au) = T] 
KrCv as v 

First use an identity of partial derivatives that involves a change of variable 

We will be able to identify some of these terms if we examine an expression for dH analogous to the 
fundamental equation [3.43]. From the definition of enthalpy, we have: 

dH = dU + pdV + V dp = TdS- pdV [3.43] + pdV + V dp = TdS + V dp 

Compare this expression to the exact differential of H considered as a function of S and p: 

dH = (aH) dS +(a H) dp 
as p ap s 

Thus.(BH) =T, (aH) =V[dHexact] 
as P ap s 

Substitution yields (aH) = T (as) + v = -T (av) + V [Maxwell relation] 
ap r ap r aT p 

L__ _ ____::___j 

(a) For pV = nRT 

(
av) nR (aH) -nRT 1n1 - = -, hence - = -- + V = L2J 
aT p P ap r P 

nRT an2 
(b) For p = -- - - 2 [Table 1.7] 

V- nb V 
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Because we cannot express V in closed form as a function ofT, we solve for T as a function of V and 
evaluate 

c;)T =-T G~)p +V= (;_) + V[reciprocalidentity] 

av P 

T = p(V- nb) + _na'--('-:V=-,'_'b"-) 
nR RV2 

2na(V - nb) 

RV3 

Therefore, (-aH_) = _____ -_T;;---,--;c,------,-,- + v 
a p T }'__ + _n_a _ :.2''--w-'-'(::;cV;-;--,-----"b:..:) 

nR RV2 RV3 

which yields after algebraic manipulation 

b 

nb- (-2"a) A2 
RT nb 

--(-,-'2;:-n-a-+)-2 A = 1 - V 
1- -A 

RTV 

When- « I, A"" I and 
Vm 

2na 2na 2na p 
x

nRT 

2pa 

R2T2 =-X 
RTV RT V RT 

(
aH) nb - (~) 

Therefore, ap T "" 
1 

_ ( 2pa ) 

R2T2 

For argon, a= 1.337dm6 atmmol-2, b = 3.20 X w-2 dm3 mol- 1, 

2na (2) x ( 1.0 mol) x (1.337 dm6 atm mol-2 ) 
0 3 - = = .lldm 

RT (8.206 X w-2 ctm3atmK- 1 mol 1) X (298K) 

2pa 

R'T2 

(2) x (IO.Oatm) x (1.337dm6 atmmol-2) 
--'-'---'-------':----'-------,--------,, = 0.045 
((8.206 x I0-2ctm3 atmK-l mol- 1) X (298K)j 

Hence, - "" = -0.0817dm 3 = -8.3Jatm- 1 (
a H) 1 (3.20 x w-2)- (O.II)j dm

3 
1 1 

ap T I- 0.045 

~H"" ( ~;) /'P"" ( -83 J atm-
1
) x (I atm) = c=TIJ 
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-I 

I'J = (:~t Cv = C~) v 
!'JCv=G~))~~)v ...,..,=,...- [Euler chain relation] 

G~)T 
[reciprocal identity]= p- T ( ap) 

aT v 

-I 

(
aT) (av) [Euler chain]= 

av r ap T 

Therefore, I !'1Cv = p- *I 
v (ap) 

av 5 

[3.48] 
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The only constant-entropy changes of state for a perfect gas are reversible adiabatic changes, for which 

pVY =canst 

Then ( ap) = (_I!_ const) = _ x ( const) = -yp 
' av av vr Y vr+t v s s 

-1 +I 
Therefore, Ks = ( ) = 

v -yp yp 

v 

Hence, I pyKs =+II 

The starting point for the calculation is eqn 3.60. To evaluate the integral, we need an analytical expression 

for Z, which can be obtained from the equation of state. 

(a) We saw in Section 1.4 that the van der Waals coefficient a represents the attractions between 
molecules, so it may be set equal to zero in this calculation. When we neglect a in the van der 

Waals equation, that equation becomes 

RT 
p=-

Vm -b 

and hence 

Z =I+ bp 
RT 

The integral in eqn 3.60 that we require is therefore 

lor (z- 1) fn" ( b ) bp In¢= -- dp = - dp =-
o p o RT RT 
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Consequently, from eqns 3.60 and 3.59, the fugacity at the pressure pis 

From Table 1.6, b = 3.71 X w-2 dm 3 mol- 1, so pbfRT = 1.516 X w-2• giving 

f = (IO.OOatm) x e0·01515 = l10.2atm I 

COMMENT. The effect of the repulsive term (as represented by the coefficient bin the van der Waals equation) 

is to increase the fugacity above the pressure, and so the effective pressure of the gas-its "escaping 

tendency"-is greater than if it were perfect. 

(b) When we neglect bin the van der Waals equation we have 

RT a 
p=---2 

Vm Vm 

and hence 

a 
Z=I--

RTVm 

Then substituting into eqn 3.60 we get 

1P (z- 1) 1P -a In</>= -- dp= --dp 
o P o pRTVm 

In order to perform this integration we must eliminate the variable Vm by solving for it in terms of 
p. Rewriting the expression for p in the form of a quadratic we have 

2 RT a 
V --Vm+-=0 

m p P 

The solution is 

Vm = ~ (RT ± ~j(RT)2- 4ap) 
2 p p 

Applying the approximation (RT)2 » 4ap we obtain 

Choosing the + sign we get 

Vm 

Then 

RT . 
- which is the perfect-gas volume. 
p 
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For ammonia a= 4.l69atmdm6 mol-2 

In¢=_ 4.l69atmdm3 mol- 1 x lO.OOatm = _
0

_
06965 

(0.08206 dm3 atm K -I mol 1 x 298.15 K)2 

¢ = 0.9237 = !_ 
p 

f = ¢p = 0.9237 x 10.00 atm = J9.237 atm J 

Solutions to applications 

P3.36 Taking the hint, we have 

We are not given the heat capacity of either the folded or unfolded protein, but if we let Cp.m be the heat 
capacity of the folded protein, the heat capacity of the unfolded protein is Cp.m + 6.28 kJ K- 1 mol-l. 
So for the heating and cooling steps, we have: 

(Tr) (348.7 K) 6S; = Cr In - = Cp.m In --- [3.19] 
T; 298.2K 

_ 1 _ 1 (298.2 K) 
tlS;;; = (Cp.m + 6.28 kJ K mol ) In 

348
_
7 

K 

(
348.7 K) _ 1 _, (298.2 K) 

so tlS; + tlS;;; = Cp.m In 
298

_
2 

K + ( Cp,m + 6.28 kJ K mol ) In 
348

_ 
7 

K 

and 

= (6.28 kJ K- 1 mol- 1
) In G:::~ ~) = -0.983 kJ K- 1 mol-l 

For the transition itself, use Trouton 's rule (eqn 3.16): 

l'>S;; = ll",H" = 509kJmol-
1 

= l.460kJK-' mol-l 
T,, 348.2 K 

P3.38 (a) At constant temperature, 

[-20- (-3l)]kJmol- 1 I I 
and tl S = = +0.035 kJ K- 1 mol- 1 = +35 JK- 1 mol- 1 

' 3lOK . . 

(b) The power density Pis 
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where 11 is the number of moles of ATP hydrolyzed per second 

N 106,-1 
11 =- = = 166 x 10-IS mols- 1 

NA 6.02 x 10" mol 1 • 

and V is the volume of the cell 

V = 1rrr3 = ~rr(IO x 10-6 m)3 = 4.19 x 10-IS m3 

jl>,Gill (31 x 103 Jmol- 1)x(l.66x 10- 18 mols- 1
) I _ 3 1 

Thus P=--= =12Wm . 
V 4.19 x 10-\S ml 

This is orders of magnitude less than the power density of a computer battery, which is about 

ISW (IOOcm)' I 4 _ 3 I Pbaucry = 3 x --- = 1.5 X 10 W rn 
IOOcm I m 

(c) Simply make a ratio of the magnitudes of the free energies 

14.2 kJ (mol glutamine)-\ 

31 kJ (mol ATP) 1 

The Gibbs-Helmholtz equation is 

a ("G)_ L>H ar T --T' 

so for a small temperature change 

For the monohydrate 

mol ATP 
0.46· -:-:----:

mol glutamine 

~rG~ 6.rHe 
----;;::- - T 2 l> T 

L>,G~90 = (462kJmol- 1
) x G~~~) + (127kJmol-

1
) x (1- ~~~~), 

L>,G~90 = \57.2 kJ mol- 1 I 

For the dihydrate 

(
190K) ( 190K) t.,Gf90 = (69.4kJmol- 1

) x 
220

K + (188kJmol- 1
) x 1-

220
K , 

t.,Gf90 = \ss.6 kJ mol- 1 I 
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For the trihydrate 

(
190K) ( !90K) 6,Gf90 = (93.2 k1 mol-l) x 
220 

K + (237 k1 mol-l) x I -
220 

K . 

t.,Gf9o=III2.8k1moi- 1
1 

P3.42 In effect, we are asked to compute the maximum work extractable from a gallon of octane, assuming 
that the internal combustion engine is a reversible heat engine operating between the specified temper

atures, and to equate that quantity of energy with gravitational potential energy of a 1000-kg mass. The 
efficiency is 

P3.44 

jiVj jiVj T, ( T. ) 
£ =- [3.8] = --="'"=I-- [3.10] so I lVI = I<'>HI I- T'h 

Jqhl jt>Hj Th 

I<'>HI = 5512 x 103 1mo!- 1 300x I03 cr !mol - 8 x 1.00 gal x · 0 x -,-,--c=- = 1.448 x I 0 1 
I gal 114.23 g 

( 
!073K) -so jiVj = 1.44S x 108 1 x I -
2273 

K = 7.642 x 107 1 

If this work is converted completely to potential energy, it could lift a 1000-kg object to a height h given 

by jiVj =mgt., so 

jiVj 7.642 X 107 1 3 I I 
h = mg = (IOOOkg)(9.81 ms 2) = 7.79 x 10 m = 7.79km 

(a) As suggested, relate the work to the temperature-dependent coefficient of performance 

[Impact 13.1 ]: 

Integrming yields 

jiVj = c, \Th {' d; + {' dT\ = C, \ThIn~- (Tr- T;)\ = C, (ThIn;; - T; + Tr) 

(b) The heat capacity is c, = (4.1841 K- 1 g- 1) x (250 g) = 10461 K- 1• so the work associated with 
cooling the water from 293 K to the freezing temperature is 

( 
293 K ) Jwl,ooliog = 10461 K-l X 293 K X In 
273 

K- 293 K + 273 K = 7481 

The refrigerator must also remove the heat of fusion at the freezing temperature. For this isothermal 

process, the coefficient of performance docs not change, so 

JcJ,I <'>r"'H (Th-T,) 
lwlrrcczc = -. = ( ) = 6.rusH ---c Tc Tc 

h -T, 

= 6.008 x 103 1mo!- 1 x 
1 

x = 61131 250 g (293- 273) -
18.0 g mol 273 
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The total work is 

lwltotol = lwlcooli"g + lwlr""' = (748 + 6i!J)J = 16.86 x 103 J = 6.86 kJ I 

At the rate of 100 W = I 00 J s- 1, the refrigerator would freeze the water in 

6.86 x !03 J ~6 t= =~ 
IOOJ s I 
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4 Physical transformations 
of pure substances 

Answers to discussion questions 

04.2 Refer to Figure 4.9 of the text. The white lines represent the regions of superheating and supercooling. 

The chemical potentials along these lines are higher than the chemical potentials of the stable phases 
represented by the colored lines. Though thermodynamically unstable, these so-called metastable phases 
may persist for a long time if the system remains undisturbed, but will eventually transform into the 

thermodynamically stable phase having the lower chemical potential. Transformation to the condensed 
phases usually requires nucleation centers. In the absence of such centers, the metastable regions are 

said to be kinetically stable. 

04.4 At 298 K and l.O atm, the sample of carbon dioxide is a gas. (a) After heating to 320 K at constant 
pressure, the system is still gaseous. (b) Isothermal compression at 320 K to 100 atm pressure brings the 
sample into the supercritical region. The sample is now not much different in appearance from ordinary 

carbon dioxide, but some of its properties are (see Impact 14.1). (c) After cooling the sample to 2l0 K 
at constant pressure, the carbon dioxide sample solidifies. (d) Upon reducing the pressure to 1.0 atm at 
210 K, the sample vaporizes (sublimes); and finally (e) upon heating to 298 Kat l.O atm, the system 
has resumed its initials conditions in the gaseous state. Note the lack of a sharp gas to liquid transition 
in steps (b) and (c). This process illustrates the continuity of the gaseous and liquid states. 

04.6 The Clapeyron equation is exact and applies rigorously to all first-order phase transitions. It shows 

how pressure and temperature vary with respect to each other (temperature or pressure) along the phase 

boundary line, and in that sense, it defines the phase boundary line. 

E4.1(b) 

The Clausius-Clapeyron equation serves the same purpose, but it is not exact; its derivation involves 

approximations, in particular the assumptions that the perfect gas law holds and that the volume of 

condensed phases can be neglected in comparison to the volume of the gaseous phase. It applies only to 
phase transitions between the gaseous state and condensed phases. 

Solutions to exercises 

Assume vapor is a perfect gas and {).vapH is independent of temperature 

p* l:l.vapH 
ln-=+--

p R ( .!. - _I_) 
T T' 
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I I R p' 
-=-+--ln-
T T""- 6.vapH p 

I 8.314J K- 1 mol- 1 (58 0) 
= -29-3-.2-K + -32 ___ 7_x_J0--:3:-J-m-oi---,-1 x In -66-0 

= 3.378 x w-3 K- 1 

T = = 296 K = 123 oc I 
3.378 X J0-3 K- 1 

dp 6.rusS 

dT 6.rus V 

6.rusS = .6.rus V - ;:;:::: 6.rus V-(
dp) [',.p 

. . dT . 6T 

assuming .6.rusS and 6.rus V independent of temperature. 

= (10.6cm3 mol- 1
) x ( 1 ~6::,) x (5.21 x 105 Pa K- 1

) 

=5.52Pam3K- 1 mol- 1 =15.5JK- 1mol- 1 1 

6r,.H = Tr6S = (427.15 K) x (5.52J K- 1 moi- 1) 

= 12.4 kJ moi- 1 I 

J J 6,,H 
Use d lnp = RT2 dT 

.6.vapH 
lnp =constant-~ 

Terms with I JT dependence must be equal, so 

(a) 

3036.8 K = _ 6.,,H 

T/K RT 

6,,H = (3036.8K)R = (8.314J K- 1 mol- 1) x (3036.8K) 

Thus 

= 125.25 kJ mol- 1 I 

Iogp =constant- 6.,,H /(RT(2.303)) 

[',.""PH= (1625 K) x (8.314) K-l moi- 1) x (2.303) 

= 131.11 kJ mol- 1 I 
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(b) Normal boiling point corresponds top= 1.000 atm = 760Torr 

1625 
log(760) = 8.750- -

T/K 

1625 
- = 8.750- log(760) 
T/K 

T /K = 
1625 

= 276.87 
8.750- log(760) 

h =1276.9 K I 

[Tr = -3.65 + 273.15 = 269.50 K] 

!'.T = (269.50 K) x (99.9 MPa)M x ( I _ I ) 
8.68klmol 1 0.789gcm-3 0.801 gcm-3 

=(3.JOT7x J06 KPar 1 mol) x (M) x (+0.01899cm3/g) x ( 10~:m3 ) 
= (+ 5.889 X 10-2 K Pa m3 r' g- 1 moi)M = (+ 5.889 X w-2 K g- 1 moi)M 

!'.T = (46.07 g mol- 1) x ( +5.889 x 1 o-2 K g- 1 mol) 

= +2.7TK 

Tr = 269.50K + 2.7TK = 1272 K I 
dm dn q 
- = - x MH~o where 11 = -
dr & - !'.~H 

dn 

dr 

dqfdt (0.87 X J03 Wm-2) X (104 m2) 

b.vapH 
= 44.0 x 103 J mol 1 

= 197.7Js-'r' mol 

= 200mols- 1 

dm - 1 - = (197.7mols-) x (18.02gmol- 1) 
dr 

E4.7(b) The vapor pressure of ice at -5 °C is 0.40 kPa. Therefore, the frost will sublime. A partial pressure of 
0.40 kPa or more will ensure that the frost remains. 

E4.B(b) (a) According to Trouton's rule (Section 3.3(b), eqn 3.16) 

!'.vopH = (851 K- 1 mol- 1) x Tb = (85 J K- 1 mol- 1) x (342.2 K) = 129.1 kl mol-l I 

(b) Use the Clausius-Clapeyron equation [Exercise 4.8(a)] 
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At T, = 342.2 K, P2 = 1.000 atm; thus at 25 °C 

(
29.1 x 1031 mol- 1

) ( I 
lnpt =- 8.3141 K- 1 mol 1 x 298.2 K 

I ) -
c3-,.42'""".2'"""""K = - 1.509 

Pt =I 0.22 atm I= 168 Torr 

At 60°C, 

In = - x --- - --- = -0 276 
(

29.1 x 103 1 mol-
1

) ( I I ) -
Pt 8.3141 K 1 mol 1 333.2 K 342.2 K . 

Pt =I 0.76 atm I= 576Torr 

6.T = Tr"'( 10 MPa) - Tr"'(O.I MPa) = · 6. - [See Exercise 4.5(b)] Tr"' 6.pM ( I ) 
6.rusH P 

f1r"'H = 6.01 kJmoi- 1 

{ 
(273.15K) X (9.9 X 106 Pa) X (18 X I0-3 kgmol-l)} 

6.T = 
6.01 x IO' 1 mol 1 

x 19.98 x I~2 kgm-3 - 9.15 x 1~2 kgm 3 I 
= -0.74K 

Tr"'(IOMPa) = 273.15 K- 0.74K = 1272.41 K I 

!:l.vapH = 6.vapU + 6.vap{pV) 

6.,.,H = 43.5 kJ mol- 1 

6.,.p(pV) = pf1,.p V = p(Vg, - Vt;q) = pVg" = RT [per mole, perfect gas] 

6.v,p(pV) = (8.3141 K- 1 mol- 1) x (352K) = 29271 mol-l 

- I . 6.,.p(pV) 2.927 kJ mol-
Fraction = = 1 6.,.pH 43.5 kJ mol 

= 16.73 X 10-2 1 = 6.73 percent 

Solutions to problems 

Solutions to numerical problems 

P4.2 Use the definite integral form of the Clausius-Clapeyron equation [Solution to Exercise 4.8(b)]. 

In (
P2) __ f1v,pH X (-1 __ I ) ·, 
PI R Tt T, 

Tt = normal boiling point; PI = 1.000 atm 

ln(p,jatm) = x --- - --- = 2.206 
(

20.25 x 103 1 mol-l) ( I I ) 
8.3141 K- 1 mol- 1 244.0K 313.2K 

P2 = '-19:-:.0:=7-a-tm'l "' 9 atm 
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COMMENT. Three significant figures are not really warranted in this answer because of the approximations 

employed. 

(a) 

(b) 

(c) 

(
aJLOl) (aJL(s)) . -- - -- = -SmO) + Sm(s) [Sectton 4.7, eqn 13] aT , aT , 

-llrusH 1 
= -~r"'S = ~r"'H = 6.01 kJ mol- [Table 2.3] 

Tr 

= -6.0! kJmol-1 =I-22.0J K-lmol-11 
273.15K · · 

(
aJL(g)) (aJL(I)) -- - -- = -Sm(g) + Sm(l) = -~"PS 

aT , aT , 

~ H -40.6kJ mo!- 1 I I = - "P = = -109.0 J K- 1 mol-l 
h 373.15K · . 

~JL"' (aiL) ~T = -Sm~T [4.1] aT , 
~JL(I) - ~JL(S) = JL(l, -5 °C) - JL(l, 0 °C) - JL(S, -5 °C) + JL(S, 0 °C) 

= JL(l, -5 °C) - JL(S, -5 °C) [JL(l, 0 °C) = JL(S, 0 °C)] 

"'-{Sm(l)- Sm(s)}~T"' -~r,S~T 

= -(5K) x (-22.0J K-1 mol- 1) =I +!!OJ mol- 1 I 

Since, /LO. -5 °C) > tL(s, -5 °C), there is a thermodynamic tendency to freeze. 

dp = ~r,S 14_6] = ~r"'H 
dT lJ.rus V T .6.rus V 

~T= dT= m "' dp 
/,

Trn.2 1Pbo' T ~r V 

T m.l p10p I:J.rusH 

•T,Tm~r"'Vx•p [T • H ct• V d t t] u u. m. ufus , an ufus assume cons an 
llrusH 

D..p = Pbm - Ptop = pgh 

Therefore 

~T = Tmpgh~r"'V 
b. rusH 

(234.3 K) x (13.6 x !03 kg m-3) x (9.81 m s-2) x (10m) X (0.5!7 x 10-6 m3 mol-l) 

2.292 x J03 J mol 1 

= 0.070 K 

Therefore, the freezing point changes to \234.4 K I 

dIn p ~,.pH . . . . . 
-- = --2- [4.11], ytelds upon mdefimte mtegratlon 

dT RT 

flvapH 
lnp =constant--

RT 



78 INSTRUCTOR'S SOLUTIONS MANUAL 

Therefore, plot In p against I /T and identify -6.vapH /R as its slope. Construct the following table 

ere 0 20 40 50 70 80 90 100 

T/K 273 293 313 323 343 353 363 373 
1000 KiT 3.66 3.41 3.19 3.10 2.92 2.83 2.75 2.68 
In (p/kPa) 0.652 1.85 2.87 3.32 4.13 4.49 4.83 5.14 

The points are plotted in Figure 4.1. The slope is -4569 K, so 

-!>. H 
"P = -4569 K, or !>.,pH= I +38.0 kJ mol- 1 I 
R 

5.5 . 

~ 
"' ~ 3.0. 
E' 

0.5 
2.6 2.8 3.0 3.2 

(103fT) K 

3.4 3.6 3.8 

Figure 4.1 

The normal boiling point occurs at p = 760Torr, or at ln(p/Torr) = 6.633, which from the figure 

corresponds to 1000 K/T "'2.80. Therefore, T, = 1357 K (84 °C) I The accepted value is 83 °C. 

P4.10 The equations describing the coexistence curves for the three states are 

(a) Solid-liquid boundary 

6.rusH T 
p = p* +--·-In- [4.8] 

L),fus V T* 

(b) Liquid-vapor boundary 

X -- !>.,pH X (-' - _I ) p=p*e-x, R T T* [4.12] 

(c) Solid-vapor boundary 

X -- L'.'"bH X (-' __ I ) 
R T T* 

[similar to 4.12] 
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We need b.subH = b.ru~H + 6.vapH = 41.4 kJ mol-l 

( 
I I ) (78.llgmol-

1
) ( I I ) - 1 1 LlrusV=Mx ---- = 

1 
x ----- =+1.197cnrmol-

. p(i) p(s) gem · 0.879 0.891 

After insertion of these numerical values into the above equations, we obtain 

(a) 

(b) 

(c) 

" 0 
>-
~ s 
_;:; 

, ( 10.6 x 103 J mol- 1 
) T 

p =p + In-
1.197 x I0-6 m3 mol 1 T' 

- 9 T 7 T 
= p' + 8.855 x 10 Pa x In- = p' + (6.64 x 10 Torr) In- (I Torr= 133.322 Pa) 

T* T* 

This line is plotted as a in Figure 4.2, starting at (p', T') = (36 Torr, 5.50 °C (278.65 K)). 

X = X - - - = (3705 K) X - - -
(

30.8x!0
3

Jmoi-
1

) (I I) - (I I) 
8.314J K 1 mol 1 T T' T T' 

p = p*e-3705Kx(l/T-I/T') 

This equation is planed as lineb in Figure4.2, starring from (p*, T*) = (36 Torr, 5.50 °C (278.65 K)). 

= x - - - = (4980 K) X - - -
(

41.4x !0
3

Jmoi-
1

) (I I) - (I I) 
X 8.314 J K 1 mol 1 T T' T T' 

p = p*e-4980Kx(l/T-l/T'l 

These points are plotted as line c in Figure 4.2, starting at (36 Torr, 5.50 °C). 

The lighter lines in Figure 4.2 represent extensions of lines band c into regions where the liquid and 
solid states respectively are not stable. 

100 

Hll 

60 

411 

20 

-10 -5 ll 5 10 15 

nrc Figure 4.2 

P4.12 The slope of the solid-vapor coexistence curve is given by 

dp 

dT 

6.subH
0 

T fl. sub yo 
so 
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The slope can be obtained by differentiating the coexistence curve graphically (Figure 4.3) 

dp = 4.41 Po K- 1 

dT 

according to the exponential best fit of the data. The change in volume is the volume of the vapor 

RT (8.3145 1 K- 1 mol-l) x (!50 K) 3 Vm=-= =47.8m 
p 26.1Po 

So 
t;.,bH"= (150K) X (47.8m3

) X (4.41PoK- 1
) =3.16 X 104 Jmol-l =131.6k1mol-ll 

60 J' = 2.6593 X J0-10+0.73281x 

50 
R2 ~ 1.000 

40 , ... 
c': 
~ 

~ 30 ~ ············:"· 

" 20 .......... : .. . 

10 : .-:: .. : ..... '-.. .. : ............. :. 

....... ; ... 

144 146 148 150 152 

TjK 

Solutions to theoretical problems 

154 156 

Figure4.3 

P4.14 dH = c, dT + V dp implying thot dt;H = t;C, dT + t; V dp 

However, along a phase boundary dp and dT are related by 

dp t;H . 
dT = T t; V [Clapeyron equolion, e.g. 4.6, 4.7, or 4.10] 

Therefore, 

dt;H = ( t;C, + t; V x Tt;:v) dT = ( t;C, + "":) dT and 

Then, since 

~ (t;H) =_I_ dt;H _ t;H =_I_ (dt;H _ t;H) 
dT T T dT T2 T dT T 

substituting the first result gives 

~(""H)= t;Cp 
dT T T 

Therefore, 

d ( t;:) = t;C;dT =I t;C1,d InTI 

dH t;H 
-=t;C +-
dT " T 
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p = poe-Mgh/RT [Impact II. I] 

p = p'e-x X= !!.,;H x u- ;, ) [4.12] 

LetT* = Tb the normal boiling point; then p* = I atm. LetT= Th, the boiling point at the altitude h. 

Take Po = I atm. Boiling occurs when the vapor (p) is equal to the ambient pressure, that is, when 
p(T) = p(h). and when this is so, T = Th. Therefore, since po = p', p(T) = p(h) implies that 

-Mgh/RT - I '"''"'H ( I I ) l e -exp --- x ---
R Th Tb 

It follows that 

where T is the ambient temperature and M the molar mass of the air. For water at 3000 m, using 
M = 29gmol- 1 

I I (29 X w-3 kg moi- 1) X (9.81 m s-2 ) X (3.000 X 103m) -=--+.:..._ __ __:"-.__...:..._.....:_ __ "7"""":._-:.,.-----'-
Th 373K (293 K) x (40.7 X J03 J mol 1) 

I I 
= 373 K + 1.397 x J04 K 

Hence, Th = 1363 K I (90 °C). 

(1) V = V(T,p) 

dV = (av) dT + (av) dp 
aT " ap r 

( av) = aV, 
aT " 

( av) = -KrV 
ap r 

hence, dV = aV dT- KyV dp 
This equation applies to both phases 1 and 2, and since V is continuous through a second-order 

transition 

a'J dT- KT,J dp = a1 dT - KT.2 dp 

. dp . dp "'' -"I Solvmg for - ytelds - = --'---'--
dT dT KT.2- KT.I 

(2) Sm = Sm(T,p) 

dSm = (asm) dT+ (as,) dp. 
aT " ap 7 

( aS"') = Cp.m [Problem 3.26] (aS"') =- (aVm) [Maxwell relation] 
aT r T ap 7 aT " 

= -aVm 
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c,,,m 
Thus, dSm = T dT- aVm dp 

This relation applies to both phases. For second-order transitions both Sm and Vm are continuous through 

the transition, Sm. I= Sm,2Ym,l = Vm.2 = V111 , so that 

Cp,m,t dT V d Cp.m.2 dT V d -T- -0'] m P= -T- -a2 m P 

. dp . dp Cp,m.2 - Cp,m.l 
Solvmgfor dT y1elds dT = TVm(a

2 
-at) 

The Clapeyron equation cannot apply because both b. V and b.S are zero through a second-order 

transition, resulting in an indeterminate form OJO. 

Solutions to applications 

(a) (I) 

The enthalpy term is justified by n- 4 independent hydrogen bonds for which each requires b.hbHm 

of heat to break during melting dissociation. The entropy term is justified by 11- 2 highly ordered, 

but independent, structures for which each experiences an entropy increase of 6.hbSm during the 
melting process. According to [3.39], the enthalpy and entropy terms give a Gibbs energy change 
of 6.G = 6.H - T 6.5 for a constant temperature process. Eqn (I) above has this necessary form. 

6. m H 6. m:. H 
6.trsS = --·- [3.16] yields T1rs =--·-which here becomes 

Tm 6.trsS 
(b) 

(11 - 4)L;hbHm 
Tm = -'---~--""-c:"' 

(11 - 2)6.hbSm 

(c) See Figure 4.4 

0.8 

TmtthbSm n-4 
0.6 

(j.hbHm n-2 
0.4 

0.2 

0 

I dTm 
Consider - -- = 

T111 d11 

0 5 10 IS 20 25 
n Figure 4.4 



PHYSICAL TRANSFORMATIONS OF PURE SUBSTANCES 83 

This expression will be less than 1% when 2/((n- 4)(n- 2)) > 0.01 or when 11 equals, oris larger 

than the value given by n2 - 6n + 8 = 200. The positive root of this quadratic is n ~ [ill. T m 
changes by about I% or less upon addition of another amino acid residue when the polypeptide 

consists of 17 or more residues. 

P4.22 (a) The phase boundary is plotted in Figure 4.5. 

0.01 '-~~~~-~-'--~-'-~-'---~ 
BO 100 120 140 160 lBO 200 

T/K Figure 4.5 

(b) The standard boiling point is the temperature at which the liquid is in equilibrium with the standard 
pressure of I bar (0.1 MPa). lnlerpolalion of the plotted points gives T b = o::!.IKJ 

(c) The slope of the liquid-vapor coexistence curve is given by 

dp 

dT 
~vapH 

T Llvap V 

The slope can be obtained graphically or by fitting the points nearest the boiling point. Then dp/dT = 
8.14 X w-3 MPaK- 1,so 

(
(8.89- 0.0380) dm3 mol-l) I I 

l!.vopH=(I12K)x 3 x(8.14kPaK- 1 )=8.07kJmol-~ 
JOOOdm m3 
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5 Simple mixtures 

Answers to discussion questions 

05.2 For a component in an ideal solution, Raoult's law is: p = xp•. For real solutions, the activity, a, 
replaces the mole fraction, x, and Raoult's law becomes p = ap*. 

05.4 All the colligative properties are a result of the lowering of the chemical potential of the solvent due to 
the presence of the solute. This reduction takes the form MA = p.,~ + RT lnxA or I-tA = p.,~ +RT lnaA. 
depending on whether or not the solution can be considered ideal. The lowering of the chemical potential 
results in a freezing point depression and a boiling point elevation as illustrated in Figure 5.21 of the text. 
Both of these effects can be explained by the lowering of the vapor pressure of the solvent in solution 
due to the presence of the solute. The solute molecules get in the way of the solvent molecules, reducing 
their escaping tendency. 

05.6 The Debye-Hiickel theory is a theory of the activity coefficients of ions in solution. It is the coulombic 
(electrostatic) interaction of the ions in solution with each other and also the interaction of the ions with 
the solvent that is responsible for the deviation of their activity coefficients from the ideal value of I. 
The electrostatic ion-ion interaction is the stronger of the two and is fundamentally responsible for the 
deviation. Because of this interaction there is a build up of charge of opposite sign around any given ion 
in the overall electrically neutral solution. The energy, and hence, the chemical potential of any given ion 
is lowered as a result of the existence of this ionic atmosphere. The lowering of the chemical potential 
below its ideal value is identified with a non-zero value of RT In Y±· This non-zero value implies that Y± 

will have a value different from unity which is its ideal value. The role of the solvent is more indirect. 
The solvent determines the dielectric constant, e, of the solution. Looking at the details of the theory 
as outlined in Further Information 5.1 we see that £ enters into a number of the basic equations, in 
particular, Coulomb's law, Poisson's equation, and the equation for the Debye length. The larger the 

dielectric constant, the smaller (in magnitude) is In Y±· 

Solutions to exercises 

E5.1(b) Total volume V = IIA VA + ns Vs = tz(XA VA + xs Vs) 

Total mass m =nAMA+ nsMs 
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1.ooo kg (I o' gfkg) 
6 

-
11 = = 4. 70 I mol 

(0.3713) x (241.1 gjmol) +(I - 0.3713) x (198.2 gjmol) 

V = n(xAVA +xsVs) 

= (4.670 j mol) x [(0.3713) x (188.2 cm3 mol- 1) +(I - 0.3713) x (176.14 cm3 mol- 1 
)] 

= 1843.5 cm3 l 

Let A denote water and B ethanol. The total volume of the solution is V = nA VA + ns Vs 

We know Vs; we need to determine "A and ns in order to solve for VA. 

Assume we have 100 cm3 of solution; then the mass is 

m = pV = (0.9687 g cm-3) x (100 cm3) = 96.87 g 

of which (0.20) x (96.87 g) = 19.374 g is ethanol and (0.80) x (96.87 g) = 77.496 g is water. 

77.496 g 
IIA = 1 = 4.30 mol H,O 

18.02 g mol 

19.374 g 
ns = 

1 
= 0.4205 mol ethanol 

46.07 g mol 

V - ns Vs 100 cm3 - (0.4205 mol) x (52.2 cm3 mol-l) 
= VA = ------'-----,=o-'----'---------'-

4.30 mol 

= 18.15 cm3 

E5.3(b) Check thatps/Xs =a constant (Ks) 

E5.4(b) 

xg 0.010 0.Dl5 0.020. 

(p8 fxs)/kPa 8.2 x 103 8.1 x 103 8.3 x 103 

Ks = pjx, average value is j8.2 x 103 kPa I 

In Exercise 5.3(b), the Henry's law constant was determined for concentrations expressed in mole 
fractions. Thus the concentration in molality must be converted to mole fraction. 

1000 g -
m(A) = lOOOg, correspondington(A) = 1 = 13.50mol 11(B) =0.25mol 

74.1 g mol 

Therefore, 

0.25 mol -
XB = = 0.0182 

0.25 mol + 13.50 mol 

using Ks = 8.2 x 103 kPa [Exercise 5.3(b)] 

p = 0.0182 x 8.2 x 103 kPa = 11.5 x 102 kPa I 



E5.5(b) 

E5.6(b) 

E5.7(b) 

E5.8(b) 

86 INSTRUCTOR'S SOLUTIONS MANUAL 

We assume that the solvent, 2-propanol, is ideal and obeys Raoult's law. 

49.62 
XA(solvent) = pfp' = 

50
_
00 

= 0.9924 

MA(C,HsO) = 60.096 g mol-l 

250g -
IIA = I = 4.1600 mol 

60.096 g mol 
IIA 

XA = --"-
llA +liB 

IIA 
liA +liB=

XA 

llB = IIA (x~ - I) 
= 4.1600 mol ( 0.9~24 - I) = 3.186 X w-2 mol 

8.69 g - I I I Ms= 
3

_
186

x 
10 

'mol =273gmol- =270gmol-~ 

Kr = 6.94 for naphthalene 

mass of B 
Ms = -"-"--'-

liB 

ns = mass of naphthalene· bs 

L!.T (mass of B) x Kr 
bs = - so Ms = .,--'--cc-..,-,-':--c'---,-= 

Kr (mass of naphthalene) x L!.T 

(5.00 g) x (6.94 K kg mol- 1) I _1 I Ms = = 178 g mol 
(0.250 kg) x (0.780 K) 

llB liB 
L!.T = Krbs and bs = = 

mass of water V p 

p = 103 kg m-3 (density of solution ~density of water) 

nv 
ns = RT 

n , 
L!.T = Kr -- Kr = 1.86 K mol- kg 

RTp 

(1.86Kkgmol- 1) x (99 x 103 Pa) 
"T = ---'---.,.---"-....,..-:...__....:... __ __,-"--....,

3 
= 7.7 x w-' K 

(8.314JK- 1 mo1 1)x(288K)x(IOlkgm) 

Tr = 1-0.077 "C I 

6.mixG = nRT(xA lnxA + xa In xs) 

liAr = llNe, XAr = XNe = 0.5, 
pV 

II =liAr+ 11Nc = RT 

6.mix G = p V ( ~ In ~ + ~ In ! ) = -p V In 2 

( 
I m

3 
) =-(100xi03 Pa)x(250cm3) 

6 3 
ln2 

10 em 

= -17.3 Pam3 = -17.31 

" . s = -L!.m;,G = 17.3 J = 16.34 X w-2 J K-1 I 

mix T 273 K · · 



E5.9(b) 6. 111 ixG = nRT L XJ In XJ [5.18] 
J 

"" -6-mixG L>,;,S = -nR 
7

x, lnx, [5.19] = --;;T;cc..-

" = 1.00 mol + 1.00 mol = 2.00 mol 

x(Hex) = x(Hep) = 0.500 

Therefore, 
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~'>mi' G = (2.00 mol) x (8.314 J K- 1 mol-l) x (298 K) x (0.500 In 0.500 + 0.500 In 0.500) 

= 1-3.43 kl 1 

+3.43 kl I _, I 
~'>m;,S= 

298
K = +11.5JK 

6.mixH for an ideal solution is zero as it is for a solution of perfect gases [7 .20]. It can be demonstrated 
from 

~'>m;,H = ~'>m;,G + T ~'>mi.S = ( -3.43 X 103 1) + (298 K) X (11.5 J K-l) =@] 

E5.10(b) Benzene and ethylbenzene form nearly ideal solutions, so 

To find maximum .6.mixS, differentiate with respect to XA and find value of XA at which the derivative 
is zero. 

Note that xs = I - XA so 

d lnx 
use--=-: 

dx X 

d XA 
-(~'>m;,S) = -nR(lnxA + I -In(! - XA)- I)= -nR In-
dx I -XA 

I 
= 0 when XA =-

2 

Thus the maximum entropy of mixing is attained by mixing equal molar amounts of two components. 

ns = 1 = ms/Ms x IIIE =ME = 106.169 = 1.3591 
llE mE/ME ms Ms 78.115 

ms =I 0.73581 
IIIE 

E5.11(b) With concentrations expressed in molalities, Henry's law [5.26] becomes PB = bsK. 

Solving forb, the molality, we have bs = PB/ K = J.Pwtai/K and Ptotal = Pmm 
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ForN2,K= 1.56x I05 kPakgmol- 1 [Table5.1] 

0.78 x 101.3 kPa I I b = ----=------;
1 

= 0.51 mmol kg- 1 

1.56 x I 05 kPa kg mol · · 

For 02, K = 7.92 x 104 kPa kg mol- 1 [Table 5.1] 

0.21 x 101.3 kPa I _1 I b = = 0.27 mmol kg 
7.92 x 104 kPa kg mol 1 

PB 2.0 x 101.3 kPa 
ba =- = 

1 
= 0.067 mol kg- 1 

K 3.01 x 103 kPa kg mol 

The molality will be about 0.067 mol kg- 1 and, since molalities and molar concentrations for dilute 

aqueous solutions are approximately equal, the molar concentration is about\ 0.067 mol dm-3 \ 

E5.13(b) The procedure here is identical to Exercise 5.13(a). 

tJ.r"'H ( I I ) lnxs = --· - x - - - [5.39; B, the solute, is lead] 
R T' T 

(
5.2xi0

3
Jmol-

1
) ( I I ) 

= 8.314JK- 1 mol- 1 x 600K-553K 

= -0.0886, implying that xa = 0.92 

n(Pb) xan(Bi) 
xa = , implying that n(Pb) = ---

n(Pb) + n(Bi) I - xa 

IOOOg 
For I kg of bismuth,n(Bi) = 

1 
= 4.785 mol 

208.98 g mol 

Hence, the amount of lead that dissolves in I kg of bismuth is 

(0.92) x (4.785mol) 
5 1 n(Pb) = 

1 
_ 

0
_
92 

= 5 mo, or~ 

COMMENT. It is highly unlikely that a solution of 11 kg of lead and 1 kg of bismuth could in any sense be 

considered ideal. The assumptions upon which eqn 5.39 is based are not likely to apply. The answer above 

must then be considered an order of magnitude result only. 

E5.14(b) Proceed as in Exercise 5.14(a). The data are plotted in Figure 5.1, and the slope of the line is 
1.78 cmj(mg cm-3 ) = 1.78 cmj(g dm-3 ) = 1.78 x w-2 m4 kg- 1• 
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FigureS.! 

Therefore, 

(8.314JK- 1 mol- 1
) x (293.15K) I I M = ----,---:_---. ____ _:_,---:_ __ _:_"""""'_.,---___,

1
,- = 14.0 kg mol- 1 

(1.000 x 103 kgm 3) x (9.81 ms-2) x (1.78 X J0-2 m4 kg ) · · 

E5.15(b) Let A= water and B =solute. 

PA 0.02239 atm I I UA = - (5.43] = = 0.9701 PA 0.02308 atm 

nA = 0.920 kg = 51.05 mol 
0.01802 kg mol 1 

and 
0.122 kg 

na = 1 = 0.506 mol 
0.241 kg mol 

51.05 0.9701 ~ 
XA = = 0.990 and YA - - 0 980 

51.05 + 0.506 - 0.990 - . 

E5.16(b) B =Benzene !LBO)= !LaO)+ RT lnxs [5.25, ideal solution] 

RT!n xa = (8.314 J K- 1 mol- 1
) x (353.3 K) x (In 0.30) = 1-3536 J mol- 1 I 

Thus, its chemical potential is lowered by this amount. 

PB =asp;, [5.43] = YBXBPs = (0.93) x (0.30) x (760 Torr)= 1212 Torr I 

Question. What is the lowering of the chemical potential in the nonideal solution withy= 0.93? 

E5.17(b) PA PA = 0.314 
101.3 kPa 

YA = = 
PA +Po 

PA = (101.3kPa) x (0.314) =31.8kPa 

PB = 101.3 kPa- 31.8 kPa = 69.5 kPa 
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PA 31.8kPa ~ 
aA=-= =~ PA 73.0 kPa · 

Ps 69.5kPa ~ 
as=--.-= =~ 

Ps 92.1 kPa 

YA = GA = 0.436 =~ 
XA 0.220 

YB = as = 0.755 =I 0.9681 
XS 0.780 

I= 1 'L,(b;/b"'lz! [5.71] 

and for an MpXq salt, b+fb"' = pbjb9
, b_fb"' = qbfb"', so 

I= 1<Pz~ + qz'_)b/b"' 

I= I(K,[Fe(CN)6]) + I(KCI) + I(NaBr) = ~ (3 + 32 ) b(K,[F=~CN)6 ]) + b(~:l) + b(::Br) 

= (6) X (0.040) + (0.030) + (0.050) =I 0.320 I 

Question. Can you establish thatlhe statement in the comment following the solution to Exercise 5.18(a) 
holds for the solution of this exercise? 

b 
I= I(KNO,) = b"' (KNO,) = 0.110 

Therefore, the ionic strengths of the added salts must be 0.890. 

(a) 

(b) 

b 
I(KNO,) = b"'' so b(KN03) = 0.890mol kg- 1 

and (0.890 mol kg- 1) x (0.500 kg)= 0.445 mol KN03 

So (0.445 mol) x (101.11 g mol-l)= 45.0 g KN03 must be added. 

I b b 
I(Ba(N03)z) = 

2 
(22 + 2 x 12

) b"' = 3 b"' = 0.890 

0.890 e - 1 
b = -

3
-b = 0.2967 mol kg-

and (0.2967 mol kg- 1) x (O.SOOkg) = 0.1484mol Ba(N03)z 

So (0.1484mol) x (261.32 g mol- 1) = 138.8 g Ba(NO,)z I 

E5.20(b) Since the solutions are dilute, use the Debye-Htickellimiting law 

logY±= -lz+z-IA/ 1
/
2 

I I 
I = 2 I:,zi<b;/b9

) = 211 X (0.020) + I X (0.020) + 4 X (0.035) + 2 X (0.035) I 

' 
= 0.125 

logy±= -J X J X 0.509 X (0.125) 1
/
2 = -0.17996 

(For NaCJ) Y± = w-O.I7996 =I 0.6611 
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The extended Debye-HUckel law is logy± = 
Alz+z-lf'l' 

I + B/ 112 

Solving forB 

( 
I AIZ+Z-1) ( I 0.509) 

B=- Jl/2 + logy± =- (bjbe)l/2 +logy± 

Draw up Lhe following table 

bj(mol kg- 1) 5.0 x 10-3 10.0 X 10-J 50.0 X 10-J 

Y± 0.927 0.902 0.816 
B 1.32 1.36 1.29 

Solutions to problems 

Solutions to numerical problems 
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VA= ( av) [5.1, A= NaCI(aq), B =water]= ("V) moi-1 [with b = bj(mol kg-1)] 
anA liB ab u(H20) 

= ((16.62) + ~ x (1.77) x (b) 1i 2 + (2) x (0.12b)) cm3 mol- 1 

= 17.5cm3 mol- 1 when b = 0.100 

For a solution consisting of 0.100 mol NaCI and 1.000 kg of water, corresponding to 55.49 mol H20, 

the total volume is given both by 

V = [(1003) + (16.62) + (0.100) x (1.77) X (0.100)312 + (0.12) x (0.100)2]cm3 

= 1004.7cm3 

and by 

V = n(NaCl)VNoCI + n(H,O) VH,o [5.3] = (0.100 mol) x (17.5 cm3 mol- 1) + (55.49 mol) x VH,O 

1004.7cm3 -l.75cm3 I 
Therefore, VH2o = = lt8.07 cm3 mol- 1 

55.49 mol 

COMMENT. Within four significant figures, this result is the same as the molar volume of pure water at 25 oc. 

Question. How does the partial molar volume ofNaCI(aq) in this solution compare to molar volume of 

pure solid NaCI? 

P5.4 Let m(CuS04 ), which is the mass of CuS04 dissolved in 100 g of solution, be represented by 

I 00 IIIB 
w = = mass percent of CuS04 

mA +ms 
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where ms is the mass of CuS04 and mA is the mass of water. Then using 

mA +ms 
p= v 

the procedure runs as follows 

a 1 ( aw ) a 1 -w a 1 
amA p = amA Bw p = rnA + 1118 Bw p 

Therefore, 

MA a I 
VA=- -wMA--

p aw p 

and hence 

Therefore, plot 1/ p against wand extrapolate the tangent tow= 100 to obtain Vs/Ma. For the actual 
procedure, draw up the following table 

w 

pj(g cm-3) 

lj(pjg cm-3) 

5 

1.051 
0.951 

10 

1.107 
0.903 

15 

1.167 

0.857 

20 

1.230 
0.813 

The values of If pare plotted against win Figure 5.2. 
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Four tangents are drawn to the curve at the four values of w. As the curve is a straight line to 
within the precision of the data, all four tangents are coincident and all four intercepts are equal at 
0.075 g- 1 cm3 Thus 

V(CuS04) =0.075g- 1 cm3 x 159.6gmol- 1 =l12.0cm3 mol- 1
1 

RTj2xs 
t:.T = -- [5.36], 

6.rusH 

liB IIBM(CH,COOH) 
xs:::::::: = 

II(CH,COOH) 1000 g 

[ba: molality of solution] 

(
(0.06005kg mol- 1) x (8.3141 K- 1moi- 1) x (290K)2 ) 

= ba x 
11.4 X I Ol J mol 1 

= 3.68K x ba/(mol kg- 1
) 

Giving for bs, the apparent molality, 

0 t:.T I 
ba = vb8 = 

3
_
68 

K mol kg-

where b~ is the actual molality and v may be interpreted as the number of ions in solution per one 

formula unit of KCI. The apparent molar mass of KCI can be detennined from the apparent molality by 
the relation 

b0 I I 
Ma(apparent) =--" x Mg =- x Mg =- x (74.56g mol- 1) 

bs v v 

where Mg is the actual molar mass of KCI. 

We can draw up the following table from the data. 

bV(moi kg- 1) O.QIS 0.037 0.077 0.295 

t:.TjK 0.115 0.295 0.470 1.381 

baf(moi kg- 1) 0.0312 0.0802 0.128 0.375 

v = bafbg 2.1 2.2 1.7 1.3 

Ma(app)/(g mol- 1) 26 34 44 57 

0.602 

2.67 

0.726 

1.2 

62 

A possible explanation is that the dissociation of KCI into ions is complete at the lower concentrations 

but incomplete at the higher concentrations. Values of v greater than 2 are hard to explain, but they could 
be a result of the approximations involved in obtaining equation 5.36. 

See the original reference for further information about the interpretation of the data. 

P5.8 (a) On a Raoult's law basis, a= p/p*, a= yx, andy= pfxp* On a Henry's law basis, a= pfK, 
andy= pjxK. The vapor pressures of the pure components are given in the table of data and are: 

pj = 47.12kPa,pA = 37.38kPa. 
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(b) The Henry's law constants are determined by plotting the data and extrapolating the low concentra

tion data to x = 1. The data are plotted in Figure 5.3. KA and K, are estimated as graphical tangents 

al XJ = I and XI = 0, respectively. The values obtained are: KA = 160.0 kPa I and K1 = 162.0 kPa I 

66.7 

KA K, 
53.3 

p• 
I 

03 40.0 
0. 

"' "-
p• 

A 

26.7 

13.3 

0 

0.2 0.4 0.6 0.8 1.0 

x(l) Figure5.3 

Then draw up the following table based on the values of the partial pressures obtained from the plots 

at the values of XJ given in the figure. 

X! 0 0.2 0.4 0.6 0.8 1.0 

p,lkPa 0 12.3 22.0 30.7 38.7 47.12+ 

PAikPa 37.38' 30.7 24.7 18.0 10.7 0 

YI(R) 1.30 1.17 1.09 1.03 I.OOO[p, jx,piJ 
YA(R) 1.000 1.03 1.10 1.20 1.43 - [pA/XAPA] 
Y!(H) 1.000 0.990 0.887 0.824 0.780 0.760[p,jx,K,'J 

tThe value of p~; *the value of p~. 

Question. In this problem both I and A were treated as solvents, but only I as a solute. Extend the table 

by including a row for YA(H). 

P5.1 0 The partial molar volume of cyclohexane is 

V, = ( :,~) p.T.,, 

A similar expression holds for Vp. Ve can be evaluated graphically by plolting V against lie and finding 

the slope at the desired point. In a similar manner, VP can be evaluated by plotting V against np. To find 

Ve. V is needed at a variety of lie while holding np constant, say at 1.0000 mol; likewise to find Vp, Vis 

needed at a variety of lip while holding lie constant. The mole fraction in this system is 

"' Xe=---
lie +lip 

Xellp 
S011e = --

1 -Xe 

From lie and lip, the mass of the sample can be calculated, and the volume can be calculated from 

V = ~ = -"':_M_,:._+_'..e'P_M_cP 
p p 
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(•) 

14(}{) 
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'E 1000 
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600 

400 

The following table is drawn up 

ndmol(np = I) V(cm 3 x, p(g cm-3 

2.295 529.4 0.6965 0.7661 
3.970 712.2 0.7988 0.7674 
9.040 1264 0.9004 0.7697 

These values are plotted in Figures 5.4(a) and (b). 

220 

200 

'E s 180 

160 

140 

(b) 

120 L-~-----~~-~-'----'----' 
0.1 0.4 0.5 

np(mol(n, = I) V(cm 3 

0.4358 230.7 
0.2519 179.4 
0.1106 139.9 

Figure 5.4 

These plots show no curvature, so in this case, perhaps due to the limited number of data points, the 
molar volumes are independent of the mole numbers and are 

V, = 1109.0 cm3 mol- 1 1 and Vp = 1279.3 cm3 mol- 1 I 

P5.12 The activity of a solvent is 

so the activity coefficient is 

PA YAP 
YA=--=--

XAP~ XAP~ 

where the last equality applies Dalton's law of partial pressures to the vapor phase. 

Substituting the data, the following table of results is obtained. 

p(kPa xr YT Yr YE 

23.40 0.000 0.000 
21.75 0.129 0.065 0.418 0.998 
20.25 0.228 0.145 0.490 1.031 
18.75 0.353 0.285 0.576 1.023 
18.15 0.511 0.535 0.723 0.920 
20.25 0.700 0.805 0.885 0.725 
22.50 0.810 0.915 0.966 0.497 
26.30 1.000 1.000 
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S = Soe'/7 may be written in the form InS= In So+ (t/T), which indicates that a plot of InS a 
1/T should be linear with slope rand intercept In So. Linear regression analysis gives T = 165 K, 

standard deviation = 2 K 

ln(Sofmol dm-3) = 2.990, standard deviation= 0.007;So = e2·990mol dm-3 = 119.89 mol dm-3 1 

R =I 0.999781 

The linear regression explains 99.98 percent of the variation. 

Equation 5.39 is 

Comparing to S = Soer/T, we see that 

where T* is the normal melting point of the solute and b. rusH is its heat of fusion I r = 6.rusH / R I 

According to the Debye-Htickellimiting law 

(bf' logY±= -0.5091z+z-l/ 1
/
2 = -0.509 b"' [5.71] 

We draw up the following table 

bj(mmol kg- 1
) 1.0 2.0 5.0 10.0 20.0 

Jl/2 0.032 0.045 0.071 0.100 0.141 

Y±(calc) 0.964 0.949 0.920 0.889 0.847 

Y±(exp) 0.9649 0.9519 0.9275 0.9024 0.8712 

log Y±(calc) -0.0161 -0.0228 -0.0360 -0.0509 -0.0720 

logy±(exp) -0.0155 -0.0214 -0.0327 -0.0446 -0.0599 

The points are plotted against ! 112 in Figure 5.5. Note that the limiting slopes of the calculated and 
experimental curves coincide. A sufficiently good value of B in the extended Debye-Hiickel law may 
be obtained by assuming that the constant A in the extended law is the same as A in the limiting law. 

Using the data at 20.0 mmol kg- 1 we may solve for B. 

A I 
8=-----= 

logY± JI/2 

Thus, 

logY±= 
0.5091 112 

I+ 1.40SJI/2 

0.509 -
-:-~= --- = 1.405 
( -0.0599) 0.141 
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Figure 5.5 

In order to determine whether or not the fit is improved, we use the data at 10.0 mmol kg- 1 

-(0.509) X (0.100) 
6 logY± = (I) + (1.405) x (0.1 00) = -0.044 

which fits the data almost exactly. The fits to the other data points will also be almost exact. 

Solutions to theoretical problems 

P5.18 XA dJLA +xs dJLs = 0 [5.12, Gibbs-Duhem equation] 

Therefore, after dividing through by dxA 

or, since d.xs = -dxA, as xA + xs = 1 

XA -- -Xs -- -0 (
aiLA) (aiLs) 
BxA p,T a.xs p.T -

or -- - -- dlnx--( 
aiLA ) ( aiLs ) [ dx] 

' a In XA p.T - a In Xs p,T - X 

f (a In/A) (a lnJB) Then,sinceJ..L=Ji-9 +RT1ne, -- = --
P a lnxA p.T a lnxs p.T 

Onreplacingfbyp, (alnpA) = (alnps) 
atnxA p.T aJnxs p,T 

If A satisfies Raoult's law, we can write PA = XAPA· which implies that 

-- =--+--=1+0 (
aJnpA) aJnXA aJnp~ 
a lnXA p.T a lnXA a lnXA 
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Therefore, (a lnps) =I 
a lnxs p.T 

which is satisfied if PB = xaps (by integration, or inspection). Hence, if A satisfies Raoult's law, so 

does B. 

P5.20 lnxA = -b.rusG/RT (Section 5.5 analogous to equation for lnxs used in derivation of eqn 5.39) 

P5.22 

d lnxA I d ( l'>r"'G) dT = -~~ x T --y- [Gibbs-Helmholtz equation] 

/,

Xt\ d lnxA = rT 6.rusH dT:::::::: flrusH {T dT 
1 Jr- RT2 R Jr- T2 

-t>r,H ( I I ) 
In XA = R x T - T* 

The approximations lnxA::::::: -xs and T::::::: T* then lead to eqns 5.33 and 5.37, as in the text. 

Retrace the argument leading to eqn 5.40 of the text. Exactly the same process applies with a A in place 

of XA. At equilibrium 

which implies that, with 11- = fJ-* + RT In a for a real solution, 

f''+n 
and hence that }p Vm dp = -RT In aA 

For an incompressible solution, the integral evaluates to Vm. so Vm = -RT In a A 

In terms of the osmotic coefficient 4> (Problem 5.21) 

xs ns 
nVm = r</JRT r =- =-

XA I 
¢ = -- lnaA = --lnaA 

XA IIA xa r 

For a dilute solution, nA Vm ~ V 

Hence, V = ns</JRT 

and therefore, with [B] = ·~ I n = </J[B]RT I 

Solutions to applications 

P5.24 The 97% saturated haemoglobin in the lungs releases oxygen in the capillary until the haemoglobin is 

75% saturated. 

100 cm3 of blood in the lung containing 15 g ofHb at 97% saturated with 02 binds 

1.34cm3 g- 1 x IS g = 20 cm3 o, 
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The same 100 cm3 of blood in the arteries would contain 

75% 
20 cm3 0 2 x 

97
% = 15.5 cm3 

Therefore, about (20- 15.5) cm3 or 14.5 cm3 I of 02 is given up in the capillaries to body tissue. 

[EB]bo"nd 
v = and [EBlbo,nct = [EBlin - [EBlom 

[M] 

Draw up the following table: 

[EB] 001 /(JLmol dm-3) 0.042 0.092 0.204 0.526 1.150 

[EB]boooct/(JLmOI dm-3) 0.250 0.498 1.000 2.005 3.000 

u 0.250 0.498 1.000 2.005 3.000 
u/[EBJom 

5.95 5.41 4.90 3.81 2.61 
2 JLmoi I 

A plot of vj[EB]out is shown in Figure 5.6. 

7c---~--~----~--~~~---, 
-. y = 6.1124 + -1_.1672 x.R2 = 0.~9511 
__ L ___ L ___ L ___ L ___ L __ _ 

I I I I I 
6 

I I I I I 
5 ---~---~---~---+---

1 I I I I 

~ 4 ---~-- I ---~---~---i---
iD I I I I 1 w 
~ 3 ---r---r- L---t---+---

1 I l I 
2 ---~---~---~- -~---+---

1 I I I I 
I I I I 

---r---r---r---r- -T---
1 I I I I 

CLLL~~~~~~~LU~I~LLL7\~~~LU~ 0o 1 2 3 4 5 6 
v Figure 5.6 

The slope is -I 167 dm3 jLmol- 1
, hence K = 11.167 dm3 jLmol- 1 1- The intercept at u = 0 is\ N = 5.24\ 

and this is the average number of binding sites per oligonucleotide. The close fit of the data to a straight 

line indicates that the identical and independent sites model I is applicable I· 

P5.28 PX,.(s) .= P'' + (aq) + vX-(aq) 

This process is a solubility equilibrium described by a solubility constant Ks 

Introducing activity coefficients and concentrations, b, we obtain 

b b\' \•+1 
Ks = P'. + x- Y± 
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At low to moderate ionic strengths we can use the Debye-Hi.ickellimiting law as a good approximation 

for Y± 

Addition of a salt, such as (NH4hS04 causes I to increase and log Y± to become more negative and 
Y± will decrease. However, Ks is a true equilibrium constant and remains unchanged. Therefore, the 
concentration of pv+ increases and the protein solubility increases proportionately. 

We may also explain this effect with the use of Le Chatelier's principle. As the ionic strength increases 

by the addition of an inert electrolyte such as (NH4)zS04, the ions of the protein that are in solution 

attract one another less strongly, so that the equilibrium is shifted in the direction of increased solubility. 

The explanation of the salting out effect is somewhat more complicated and can be related to the failure 

of the Debye-Htickellimiting law at higher ionic strengths. At high ionic strengths we may write 

where K is the salting out constant. At low concentrations of inert salt, ! 112 > /, and salting in occurs, 
but at high concentrations, I > J112, and salting out occurs. The Le Chatelier's principle explanation is 

that the water molecules are tied up by ion-dipole interactions and become unavailable for solvating the 

protein, thereby leading to decreased solubility. 

We use eqn 5.41 in the fonn given in Example 5.4 with n = pgh, then 

fl = RT (I+ f!..c) = RT + RTB c 
eM M MM2 

where cis the mass concentration of the polymer. Therefore plot n;c against c. The intercept gives 

RT 1M and the slope gives RT I M2 . 

The transformed data to plot are given in the table 

cl(mg cm-3) 1.33 2.10 4.52 7.18 9.87 

(fl lc)I(N m-2 mg- 1 cm3) 22.56 24.29 29.20 34.26 39.51 

The plot is shown in Figure 5.7. The intercept is 29.09N m-21(mg cm-3). The slope is 
1.974N m-21(mg cm-3) 2 Therefore 

RT 
M = -:-:-:=-:--c-....,.-:.,--"""""'"'" 

29.09 N m 21(mg em 'J 

= 8.3145JK-
1 

mol-
1 

x 303.15K x (-Ig_) x (10
6

cm
3

) 
20.09 N m 'l(mg cm-3) 103 mg I m3 

= 1.255 x 105 g mol- 1 = [1.26 x !05g mol- 1 [ 
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Figure 5.7 



6 Phase diagrams 

Answers to discussion questions 

06.2 The principal factor is the shape of the two-phase liquid-vapor region in the phase diagram (usually a 

temperature-composition diagram). The closer the liquid and vapor lines are to each other, the more 

theoretical plates needed. See Figure 6.15 of the text. But the presence of an azeotrope could prevent the 
desired degree of separation from being achieved. Incomplete miscibility of the components at specific 

concentrations could also affect the number of plates required 

06.4 See Figures 6.1 (a) and 6.1 (b). 

t 
T 

8 

Liquid 
A&B 

Solid 8 
and 

Solid AB2 

0.33 

Liquid A and B 

Eutectic 

p = conslanl 

Liquid 
A&B 

Solid A 

Solid AB2 and Solid A 

...,_____ T" 
A 

A 
Figure 6.1(a) 



p =constant 

T" 

J' 
i 

Vapor 

T 

Liquid 

B 0.67 A 

06.6 See Figure 6.2. 

E6.1(b) 

t 
T 

A 

Solid A 

Liquid 
A&B 

Two solid phases 

0.333 

Liquid (A & B) 

Solid B 

Solid B 

Solid B2A 

Two solid phases 

Xg __. 0.666 

B2A 

Two solid phases 

Solutions to exercises 

p = PA + PB = XAP~ +(I - XA)Ps 
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~T" A 

Figure 6.1(b) 

B 

Figure 6.2 



E6.2(b) 

E6.3(b) 

E6.4(b) 
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19kPa-18kPa ~ 
XA = = (0.5) A is I, 2-dimethylbenzene 

20kPa- 18kPa 

XAJJ~ (0.5) X (20 kPa) - ~ 
VA = = = 0.526 ""8 
. Pa + (p~- p0)xA 18kPa + (20kPa- 18kPa)0.5 

YB = I - 0.526 = 0.474 ""0.5 

PA =YAP= 0.612p = XAP~ = XA (68.8 kPa) 

PB = YBP =(I- YA)P = 0.388p = XBPa =(I- XA) x 82.1 kPa 

YAP XAP~ 0.612 68.8xA 
= and = =.,...,.,---'c.:_.,. 

YBP XBPa 0.388 82.1 (I - XA) 

(0.388) X (68.8)XA = (0.612) X (82.1)- (0.612)(82.l)XA 

26.694.rA = 50.245 - 50.245XA 

50.245 ~ ~ 
XA = = ~ XB = I - 0.653 = ~ 

26.694 + 50.245 

p =·'"AI'~ + x8 p8 = (0.653) x (68.8 kPal + (0.347) x (82.1 kPa) = 173.4 kPa I 

(a) If Raoult's law holds, the solution is ideal. 

PA = XAP~ = (0.4217) X (110.1 kPa) = 46.43kPa 

PB =xsPa =(I -0.4217) x (94.93kPa) = 54.90kPa 

p = PA + PB = (46.43 + 54.90) kPa = 101.33 kPa = 1.000 atm 

Therefore, Raoult's law correctly predicts the pressure of the boiling liquid anctl the solution is idea! I. 

(b) PA 46.43 kPa I I 
YA = - = = 0.4582 

p 101.33 kPa 

YB = I - YA = 1.000- 0.4582 =I 0.54181 

Let B =benzene and T =toluene. Since the solution is equimolar zs = zr = 0.500 

(a) Initially xs = zs and xr = zr; thus 

(b) 

p = xsPa +><A [6.3] = (0.500) x (9.9 kPaJ + (0.500) x (2.9 kPaJ 

= 4.9SkPa + 1.4SkPa = 16.4 kPa I 

i'B 4. 9 S kPa r;;-::;:;-] r;;-::;:;-J 
VB=- [6.4] = = [_(}27j)'r =I- 0.77 = ~ 
· p 6.4kPa 

(c) Near the end of the distillation 

YB = ZB = 0.500 and YT = ZT = 0.500 



E6.5(b) 

E6.6(b) 
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Equation 6.5 may be solved for XA [A= benzene= B here] 

YBPT 
XB = Pa + (PT -pa)YB 

XT = I - 0.23 = 0.77 

(0.500) x (2.9 kPa) 
-:::-::-;-;:c-:-'-:-:::--::-----::'-::-:-:-::--'--:::-c= = 0. 23 
(9.9 kPa) + (2.9- 9.9) kPa x (0.500) 

This result for the special case of zs = ZT = 0.500 could have been obtained directly by realizing that 

YB (initial) = XT (final); Yr (initial) = xs (final) 

p(final) = xsPa + XTPi- = (0.23) x (9.9 kPa) + (0.77) x (2.9 kPa) = 14.5 kPa I 
Thus in the course of the distillation the vapor pressure fell from 6.4 kPa to 4.5 kPa 

See the phase diagram in Figure 6.3. 

(a) YA =@iU 
(b) XA =I 0.671 YA =I 0.9251 

ISS 

ISO 

145 

140 

13S 

130 

125 

120 '------~------'-----"-------'----'----' 
0 0.2 0.4 0.6 0.8 1.0 

Figure6.3 

Al3+, H+, AICI3, AI(OH)3, OH-, Cl-, H20 giving seven species. There are also three equilibria 

AICI, + 3H20 ;= AI(OH)J + 3HCI 

AICI, ;= Al3+ + 3CI-

H,O ;= H+ + OH-

and one condition of electrical neutrality 

Hence, the number of independent components is 

C = 7- (3+ I)= ITj 
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E6.7(b) NH,CI(s) .= NH,(g) + HCI(g) 

E6.8(b) 

E6.9(b) 

(a) For this system I C = I I [Example 6.1] and I P = zl (s and g). 

(b) If ammonia is added before heating, I C = 2! (because NH4Cl, NH3 are now independent) and 

1 p = zl <s and g). 

(a) Still I c = zl (Na,so,, HzO), but now there is no solid phase present, so I p = zl (liquid solution, 
vapor). 

(b) The variance is F = 2- 2 + 2 =(I]. We are free to change any two of the three variables, amount 
of dissolved salt, pressure, or temperature, but not the third. If we change the amount of dissolved 
salt and the pressure, the temperature is fixed by the equilibrium condition between the two phases. 

See Figure 6.4. 

+ 10 ................... .. 

: ~ ~ : : ........ i_j~~-i-d[+-·N;"i-1~·-: -30 

~ ..... : ·····-~-
~ 
~ 

-50 ........ ; ............ ,/-·····!·····-·-···"i "'"!'""'''''' 

-70 · ' r I 
: Sol~d NJ--1) -t N2f£4 

-90 : .. ' ' . ' -~.. . ....•..... ,; ........... _, ..... '" ... 
0 Figure 6.4 

E6.10(b) See Figure 6.5. The phase diagram should be labeled as in figure 6.5. (a) Solid Ag with dissolved 
Sn begins to precipitate at at, and the sample solidifies completely at a2. (b) Solid Ag with dissolved 
Sn begins to precipitate at b1, and the liquid becomes richer in Sn. The peritectic reaction occurs at b2, and 

(a) 
b 

(b) 
a 

a, 

800 Liquid 

L+ Ag solid 
b, 

contaminated 

u with Sn 
- _4_6_0_"_<:: -

'2..._ oi 
~ b, 

Ag,sr + Ag 
L+Sn L+Ag3Sn cdntarninated 

solid solid b
3 

wit Sn 
8,. b 

200 Sn + Ag3Sn solids a 

Sn Ag3Sn Ag Time Figure 6.5 
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as cooling continues Ag3Sn is precipitated and the liquid becomes richer in Sn. At b3 the system has its 
eutectic composition (e) and freezes without further change. 

See Figure 6.6. The feature denoting incongruent melting is circled. Arrows on the tie line indicate the 

decomposition products. There are two eutectics: one at xa =I 0.531, T =I T1 I: another at xa =I 0.821. 

T =[~_]. 

h 0 
T, . 

0 
A 

0.33 

a 

I 
\ 

\ 
To VI\ 

T, 

0.67 
B Figure 6.6 

E6.12(b) The cooling curves corresponding to the phase diagram in Figure 6.7(a) are shown in Figure 6.7(b). 
Note the breaks (abrupt change in slope) at temperatures corresponding to points at,ht. and b2. Also 

note the eutectic halts at a2 and b3. 

(o) 

0 
A 

b 

0.33 

a 

0.67 
xn 

T, 

I 
B 

(b) 

b 

a 

Figure 6.7 
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E6.13(b) Rough estimates based on Figure 6.37 of the text are 

(a) xs ""I 0.751 (b) XAB 2 ""@!] (c) XAB2 ""I 0.61 

E6.14(b) The phase diagram is shown in Figure 6.8. The given data points are circled. The lines are schematic 
at best. 

1000 

900 

800 

700 Solid 

0 0.2 0.4 0.6 0.8 

Figure 6.8 

A solid solution with x(ZrF4 ) = 0.24 appears at 855 °C. The solid solution continues to form, and 
its ZrF4 content increases until it reaches x(ZrF4) = 0.40 and 820 °C. At that temperature, the entire 
sample is solid. 

E6.15(b) The phase diagram for this system (Figure 6.9) is very similar to that for the system methyl ethyl ether 
and diborane of Exercise 6.9(a). The regions of the diagram contain analogous substances. The solid 
compound begins to crystallize at 120 K. The liquid becomes progressively richer in diborane until the 
liquid composition reaches 0.90 at 104 K. At that point the liquid disappears as heat is removed. Below 

104 K the system is a mixture of solid compound and solid diborane. 

\40 

...... 

" / 

• 
/ I 

130 

120 \ I· 

110 \ J·· 
....... '· .. 

100 , .... , .... 
...... ...... 

90 ...... 
0 Figure 6.9 
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E6.16(b) Refer to the phase diagram in the solution to Exercise 6.14(a). The cooling curves are sketched in 

Figure 6.10. 

(a) (b) (c) (d) (c) 

95 

93 

91 

~ 89 

87 

85 

83 Figure 6.10 ( ~ 

E6.17(b) (a) When XA falls to 0.47, a second liquid phase appears. The amount of new phase increases asxA falls 
and the amount of original phase decreases until, at XA = 0.314, only one liquid remains. 

(b) The mixture has a single liquid phase at all compositions. 

The phase diagram is sketched in Figure 6.11. 

54 

52 

50 

p 48 

;;;-
46 

44 

42 

40 

38 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

XA 

Solutions to problems 

Solutions to numerical problems 

P6.2 (a) The phase diagram is shown in Figure 6.12. 

Figure 6.11 

(b) We need not interpolate data, for 296.0 K is a temperature for which we have experimental data. 

The mole fraction of N, N -dimethylacetamide in the heptane-rich phase (a, at the left of the phase 
diagram) is 0.168 and in the acetamide-rich phase (/3. at righl) 0.804. The proportions of the lwo 

phases are in an inverse ratio of the distance their mole fractions are from the composition point in 
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305 

290 L---'------'--'----'------'--'---'----'--'-_J 
0.0 0.2 0.4 0.6 0.8 1.0 

Figure 6.12 

question, according to the lever rule. That is 

n0 /np = fp/10 = (0.804- 0.750)/(0.750- 0.168) =I 0.0931 

The smooth curve through the data crosses x = 0. 750 at 1302.5 K I. the temperature point at which 
the heptane-rich phase will vanish. 

P6.4 The phase diagram is shown in Figure 6.13(a). The values of xs corresponding to the three compounds 
are: (I) P4S3 , 0.43; (2) P4s7 • 0.64; (3) P4 S10, 0.71. 

350 

300 

250 

:; 200 

"' 150 

100 

50 

0 
0 0.2 

~43 0~ 

0.4 0.6 

0.71 

"' 
0.8 

s, 

1.0 

Figure 6.13(a) 

The diagram has foureutectics labelled e1, e2, e3, and e4; eight two-phase liquid-solid regions, t 1 through 

tg; and four two-phase solid regions, S 1, S2, S3, and S4. The composition and physical state of the regions 
are as follows: 

/: liquidS and P; 

s1: solid p and solid r.s, s,: solid r.s, and solid r.s,; 



11 : liquid P and Sand solid P 

13: liquid P and S and solid P4 S3 
Is: liquid P and S and solid P4S7 
17: liquid P and Sand solid P4S10 

PHASE DIAGRAMS Ill 

12: liquid P and Sand solid P4S3 

14: liquid P and S and solid P4S, 
16 : liquid P and S and solid r.s 10 

Is: liquid P and S and solid S 

A break in the cooling curve (Figure 6.13(b)) occurs at point b1 :::::::: I25°C as a result of solid P4S3 
forming; a eutectic halt occurs at point e1 :::::::: 20 °C. 

300 

250 

200 

~ 150 

"' 
100 

50 

Figure 6.13(b) 

P6.6 See Figure 6.14(a). The number of distinct chemical species (as opposed to components) and phases 
present at the indicated points are, respectively 

(a) (b) 

1200 

800 
:-> (12 
~ 

"' '• ,, 
400 ,, 

Cu MgCu2 Mg2Cu Mg Time Figure 6.!4(a) 

b(3. 2). d(2. 2). e(4. 3). /(4. 3). g(4. 3). k(2, 2) 

[Liquid A and solid A are here considered distinct species.] 
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The cooling curves are shown in Figure 6.14(b). 

(a) (b) 
1200 

~ 
800 

~ 
a, 

"' ,, ' •a, ,, 
400 

Mg Time Figure 6.14(b) 

P6.8 (a) The .6-mixG(Xpb) curves show that at 1500 K lead and copper are totally miscible. They mix to form 

a homogeneous solution no matter what the relative amounts may be. However, the curve at 1300 K 

appears to have a small double minimum, which indicates two partially miscible phases (Sections 

5.4b and 6.5b) at temperatures lower than 1300 K ( 1100 K curve of the figure) there are two very 

distinct minimum and we expect two partially miscible phases. The upper critical temperature is 

about 1300 K a! 1500 K, 

F = C- P + 2 = 2- I + 2 =[}]at 1100 K 

F=C-P+2=2-2+2=[I) 

(b) When a homogeneous, equilibrium mixture with Xpb = 0.1 is cooled from 1500 K to 1100 K, no 

phase separation occurs. The solution composition does not change. 

If an XPb = 0.7 homogeneous, equilibrium mixture is cooled slowly, two partially miscible phases 

appear at about 1300 K. The separation occurs because the composition lies between two minimum 

on the .6.mix G curve at 1300 K and phase separation lowers the total Gibbs energy. 

The composition ofthe two phases is determined by the equilibrium criterion J.Li (a) = J.Li ({3) between 

the a and fJ phase. Since the chemical potential is the tangent of the .6.mixG curve, we conclude that 

the straight line that is tangent to .6.mix.G(x) at two volumes of x (a double tangent) detennine the 

composition of the two partially miscible phases. The 1100 K data is expanded (this can be done 

on a photocopy machine) so that the numerical values may be extracted more easily. The double 

tangent is drawn and the tangent points give the composition I Xpb(a) = 0.191 and I Xpb(.B) = 0.861. 

See Figure 6.15. (Notice that the tangent points and the minimum do not normally coincide.) The 

relative amounts of the two phases is determined by the lever rule (eqn 6.7). 

"• = ~p_ = o.s6- o.1o =I 0_361 
~~~ '· 0.70-0.19 

(c) Solubility at I 100 K is determined by the positions of the two minimum in the .6.mixG curve. The 

maximum amount of lead that can be dissolved in copper yields a mixture that has XPb = 0.17, any 
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more lead produces a second phase. 

. (0.17meH'I5) (207.19gPb) ( lmeteli) I I solubility ofPb m Cu = x x = 0.67g Pb/gCu 
0.83 meteli I mel-P15 63.54 g Cu 

The second minumum in the ~mi:o::G curve at 1100 K is at XPb = 0.86. 

. (0.14meteli) (63.54gCu) ( I mol Pb ) solubility of Cu m Pb = x x 
0.86mo!Pb lmele!f 207.19gPb 

= I 0.050 g Cu/g Pb I 

Cu-Pb mixtures at 1100 K 
~-5rr---------------------------------, 

~.6 

composition at min: 0.86 
-; -D. 7 
~ ~ ::! ~.8 

"' J~9 
-1.0 

-I. I '-"C:....~~~~~,L--~~'-::'~~~-:'-::---'7-~-'---=' 
0.0 0.4 0.6 7.8 1.0 

Xpb 

tangenL composition 0.86 Figure 6.15 

The data are plotted in Figure 6.16. At 360 °C, KzFeCI4 (s) appears. The solution becomes richer in 
FeCh until the temperature reaches 351 °C, at which point KFeCIJ(S) also appears. Below 351 °C the 
system is a mixture of K2FeCI4(s) and KFeCI,(s). 

soo KT ....... :···" ..................... , ... " ...... , ...... , ...................... .. 
, ~....... : ...... ··· ... ·,··········· .. :······:·····,:, ....... .. 

· ., Liquid ........ :"-<\·'''. ' + : ....... : .: ....... ;.. .. .. . 

600 ; , ..... '/vL .. 
~i~~i~~~~~; ······ ....... / " 

, ; h...... /:/(Li~~id~Fe~l,_ 
400 [·=· ~ ... ~ ... t .. =~·-~···::~·· JpJY:::QtT:-T~ ... J .. ,~ ... ~ ... f ... JT~ 
200 

0 

.. ..... .. ·- ... ' ...... .. 
KCI + K2Fe.Cl4 ! K2FeC14 + KFeCil + FeC12 ... '' KF Cl ................ , ..... .,. ...... , .. . 

······.·•·.•.•.·.· .. ·.· .• ~.·. .. '· 3 ; : : 

0.2 0.4 
x(FcC12) 

; . . . ~ ...... i. .. . 
0.6 0.8 1.0 

Figure 6.16 
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Solutions to theoretical problems 

P6.12 The implication of this problem is that energy in the form of heat may be transferred between phases and 

that the volumes of the phases may also change. However, Ua +Up = constant and V a+ V .8 = constant. 

Hence, 

dU~ = -dUa (b) and dV~ = -dVa (c) 

The general condition of equilibrium in an isolated system is dS = 0; hence 

dS = dSa + dS~ = 0 (a) 

S = S(U, V) 

(as. ) (as.) (as~ ) (as~) dS = - dUa + - dVa + -- dU~ + - dV~ 
au. v. av. u. au~ v, av~ u, 

Using conditions (b) and (c), and eqn 3.45 

( 
I I ) (Pa P~) dS = - - - dUa + - - - dVa = 0 

Ta T~ Ta T~ 

The only way in which this expression may, in general, equal zero is for 

I I 
---=0 and 
Ta T~ 

Therefore. I Ta = Tf3 and Pa = PP I 

Solutions to applications 

P6.14 Above about 33 °C the membrane has the highly mobile liquid crystal form. At 33 °C the membrane 
consists of liquid crystal in equilibrium with a relatively small amount of the gel fonn. Cooling from 
33 °C to about 20 °C, the equilibrium persists but shifts to a greater relative abundance of the gel form. 

Below 20 °C the gel form alone is stable. 

P6.16 Kevlar is a polyaromatic amide. Phenyl groups provide aromaticity and a planar, rigid structure. The 

amide group is expected to be like the peptide bond that connects amino acid residues within protein 

molecules. This group is also planar because resonance produces partial double bond character between 

the carbon and nitrogen atoms. There is a substantial energy barrier preventing free rotation about the 

C-N bond. The two bulky phenyl groups on the ends of an amide group are trans because steric 

hinderance makes the cis conformation unfavorable. 
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'Q ~0 
N-C .{ 'Q 
trans 

····~ 0 

~EfJ /0 
+-----ll> N=C .{ 'Q 

tr.ms 

resonance 

The flatness of the Kevlar polymeric molecule makes it possible to process the material so that many 

molecules with parallel alignment form highly ordered, untangled crystal bundles. The alignment makes 

possible both considerable van der Waals attractions between adjacent molecules and for strong hydrogen 

bonding between the polar amide groups on adjacent molecules. These bonding forces create the high 

thermal stability and mechanical strength observed in Kevlar. 

~ 
~ ~0 

hydrogen bond N _- C 'Q ····o ~_,~/- r ~ 
r ~ ,' \ -
~ &o o-

hydrogen bond N - C ~+ ...______ 

. . . '-......_ Jf' c;- h polar, covalent bonds 

'Q """ / ,j•\ 'W,_ 
~ 
o"~- _..., ... 

N - C :::-------..__ .{ '0.... polac. covale"t bonds 

Kevlar is able to absorb great quantities of energy, such as the kinetic energy of a spreading bullet, 

through hydrogen bond breakage and the transition to the cis conformation. 

In the float zoning (FZ) method of silicon purification, a polycrystalline silicon rod is positioned atop a 

seed crystal and lowered through an electromagnetic coil. The magnetic field generated by the coil creates 

electric currents, heating, and local melting in the rod. By slowly moving the coil upward impurities 

move with the melt zone. The lower surface of the melt zone solidifies to an ultrapure, single crystal as 

it slowly cools. See Figure 6.17. Search www.nrel.gov 
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seed 

Advantages 

feed rod 

crystal 
(boule) 

Figure 6.17 

Produces ultrapure silicon for high efficiency 
photovoltaic cells and infrared detectors for 
space, defense, and environmental applications 
No crucible contamination 
Produces large boules (I 0 em diameter) 

Disadvantages 

Requires a smooth, unifonn diameter, and 
crack-free feed rod 

High cost of heating 
Process must be conducted under helium or 
argon and I o-5 Torr vacuum 
Boron impurity is not removed from silicon 
Boule must be sliced with a diamond saw into 
thin wafers for microelectronic devices. This 
reduces the useful volume of the boule 

The temperature-composition lines can be calculated from the formula for the depression of freezing 

point [5.36]. 

RT*2xs 
L'.T"' -

b..rusH 

For bismuth 

RT'2 = (8.314 J K- 1 mol-l) x (544.5 K) 2 = 
227 

K 

~'>r,H 10.88 x 1Q3 Jmol 1 

For cadmium 

RT'2 

6.rusH 

(8.314J K- 1 mol- 1
) x (594.5 K)2 = 

483 
K 

6.07 x 103 J mol 1 
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We can use these constants to construct the following tables 

x(Cd) 0.1 0.2 0.3 0.4 

t>T/K 22.7 45.4 68.1 90.8 (t>T = x(Cd) x 227 K) 

Tr/K 522 499 476 45.4 (Tr = T(- t>T) 

x(Bi) 0.1 0.2 0.3 0.4 

t>T/K 48.3 96.6 145 193 (t>T = x(Bi) x 483 K) 

Tr/K 546 497 449 401 (Tr = T(- t>T) 

These points are plotted in Figure 6.18(a). 

(a) (b) 
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Figure 6.18 

The eutectic temperature and concentration are located by extrapolation of the plotted freezing point 
lines until they intersect ate, which corresponds toTe"' 400 K and XE(Cd) "'0.60 

Liquid at a cools without separation of a solid until a' is reached (at 476 K). Solid Bi then separates, and 

the liquid becomes richer in Cd. At a111 (400 ~)the composition is pure solid Bi +liquid of composition 

XBi = 0.4. The whole mass then solidfies to solid Bi + solid Cd. 

. n(/) /(s) 
(a) At 460 K (pomt a'), - = - "' 5 by the lever rule. 

n(s) 1(1) 

(b) At 375 K (point a"") there is I no liquid I· The cooling curve is shown in Figure 6.18(b). 

COMMENT. The experimental values of fE and XE(Cd) are 417 K and 0.55. The extrapolated values can be 

considered to be remarkably close to the experimental ones when one considers that the formulas employed 

apply only to dilute (ideal) solutions. 
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7 Chemical equilibrium 

Answers to discussion questions 

07.2 The thermodynamic equilibrium constant involves activities rather than pressures. See eqn 7.16 and 

Example 7 .I. For systems involving gases, the activities are the dimensionless fugacities. At low pres
sures, the fugacity may be replaced with pressures with little error, but at high pressures that is not a 

good approximation. The difference between the equilibrium constant expressed in activities and the 
constant expressed in pressures is dependent upon two factors: the stoichiometry of the reaction and 

the magnimde of the partial pressures. Thus there is no one answer to this question. For the example of 
the ammonia synthesis reaction, in a range of pressures where the fugacity coefficients are greater than 

one, an increase in pressure results in a greater shift to the product side than would be predicted by the 

constant expressed in partial pressures. For an exothermic reaction, such as the ammonia synthesis, an 
increase in temperature will shift the reaction to the reactant side, bur the relative shift is independent of 

the fugacity coefficients. The ratio ln(K2/ K,) depends only on !:>,H. See eqn 7.25" 

07.4 The physical basis of the dependence of the equilibrium constant on temperature as predicted by the 
van't Hoff equation can be seen when the expression 6.rGt. = ClrH 9 

- T 6.rS 9 is written in the form 

R In K = -6.rH 9 /T + 6.rSe-. When the reaction is exothermic and the temperature is raised, In K and 
hence K decrease, since T occurs in the denominator, and the reaction shifts to favor the reactants. When 

the reaction is endothermic, increasing T makes InK less negative, or K more positive, and products 
are favored. Another factor of importance when the reaction is endothermic is the increasing entropy of 

their reacting system resulting in a more positive InK, favoring products. 

07.6 The potential difference between the electrodes in a working electrochemical cell is called the cell 

potential. The cell potential is not a constant and changes with time as the cell reaction proceeds. Thus 
the cell potential is a potential difference measured under non-equilibrium conditions as electric current 

is drawn from the cell. Electromotive force is the zero-current cell potential and corresponds to the 
potential difference of the cell when the cell (not the cell reaction) is at equilibrium. Infinitesimally 

small changes from this equilibrium are reversible with constant concentration and, consequently, it is 
possible to relate emf to thermodynamic properties. 

07.8 Construct a cell using a standard hydrogen electrode and an electrode designed around the redox couple of 
interest. The cell potential E is measured with a high impedance voltmeter under zero current conditions. 

When using SHE as a reference electrode, E is the desired half-reaction potential [7.13]. Should the 

redox couple have one or more electroactive species (i) that are solvated with concentration /Ji, E must 
be measured over a range of bi values. 
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The Nernst equation [7.29], with Q being the cell reaction quotient, is the starling point for analysis of 

the E(b;) data. 

RT 
E=Ee- -lnQ 

vF 

h would seem that substitmion of E and Q values would allow the computation of the standard redox 
potential £ 0 for the couple. However, a problem arises because the calculation of Q requires not only 

knowledge of the concentrations of the species involved in the cell reaction but also of their activity 
coefficients. These coefficients are not usually available, so the calculation cannot be directly completed. 

However, at very low concentrations, the Debye-Hiickel limiting law for the coefficients holds. The 
procedure then is to substitute the Debye-Hi.ickellaw for the activity coefficients inro the specific form 

of the Nernst equation for the cell under investigation and carefully examine the equation to determine 
what kind of plot lO make of the E(bi) data so that extrapolation of the plot to zero concentration, where 

the Debye-Htickellaw is valid, gives a plot intercept that equals £ 9
. See Section 7.8 for the details 

of this procedure and an example for which the relevant graph involves a plot of E + (2RT 1 F) In b 

against b 112. 

Solutions to exercises 

N204(g),: 2NO,(g) 

Amount at equilibrium (1-a)n 2an 

Mole fraction 
1-a 2a 
--
l+a l+a 

Partial pressure 
(I - a)P 2aP 

l+a l+a 

Assuming that the gases are perfect, a1 = ~ 
pe 

4a2 
Forp =p0 ,K = --, 

I -ex-

(a) I 6, G = 0 I at equilibrium 

(b) a= 0.201 K = t~~~~~', =I 0 168411 

(c) 6,G0 = -RTinK = -(8.314JK- 1 mol- 1) x (298K) x ln(O.l684I) 
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E7.2(b) (a) Br2 (g) <"" 2Br(g) a = 0.24 

E7.3(b) 

Amount at equilibrium (1-a)n 

Mole fraction 
1-a 
l+a 

(I - a)P 
Partial pressure 

l+a 

Assuming both gases are perfect a1 = p: 
p 

4(0.24)2 - rn::;-;;l 
= =0.2445 =~ 

I - (0.24)2 

2cw 

2a 
l+a 
2aP 
l+a 

(b) 6.,G9 = -RTinK = -(8.314JK- 1 mo!- 1) x (!600K) x ln(0.2445) 

I= !9kJmoJ-I I 

(c) 
6.,H

9 
( I I ) lnK(2273K) = lnK(1600K)- -- ------

R 2273 K 1600 K 

- (1!2x10
3

mol-
1

) 4 = Jn(0.2445) - I X ( -J.85J X JO- ) 
8.3!4JK 1 mol 

= 1.084 

K(2273 K) = ei.os4" = 12.961 

v(CHCI,) =I, v(HCI) = 3, v(CH,) =-I, v(CI2) = -3 

(a) 6.,G 9 = C.rG 9 (CHCIJ, I)+ 36.rG9 (HCI, g) - 6.rG 9 (CH,, g) 

= (-73.66kJ mol- 1) + (3) x (-95.30kJmol- 1)- (-50.72kJmol- 1) 

=l-3o8.84kJmoi-'I 

6.,G9 -(-308.84 x 103 Jmol- 1
) = 

124
_
584 

lnK=-RT[7.S]= (8.3145JK 1 mol 1)x(298.!5K) 

K=ll.3 x ws•l 

(b) 6.,H 9 = 6.rH 9 (CHCIJ, I)+ 36.rH 9 (HCI, g)- 6.rH 9 (CH,,g) 

= ( -134.47 kJ mol-l) + (3) x ( -92.31 kJ mo!- 1) - ( -74.81 kJ mol-l) 

= -336.59 kJ mol- 1 
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lnK(50°C) = lnK(25°C)- tJ.,H"' (-
1
-- -'-) [7.25] 

R 323.2 K 298.2 K 

- (-336.59 x !03 )mol-l) _ 
= 124.584- I I x (-2.594 X 10-4 K- 1) = 114.083 

8.3145 J K mol 

K(50°C) = 13.5 x 1049 1 

tJ.,G"'(50°C) = -RTlnK(50°C) [7.17] = -(8.3145JK- 1 mo!- 1) x (323.15K) x (114.083) 

=1306.52kJmo!- 1 1 

Draw up the following table. 

A + B ~ c + 

Initial amounts/mol 2.00 1.00 0 
Stated change/mol +0.79 
Implied change/mol -7.09 -7.09 +7.09 
Equilibrium amounts/mol 1.21 0.21 0.79 
Mole fractions 0.1782 0.0302 0.1162 

(a) Mole fractions are given in the table. 

(b) I(,= nx?. 
J 

(0.!163) X (0.674.5)2 ln""Z! 
K,= =8 

. (0.1782) X (0.0309) 

(c) PJ = XJP· Assuming the gases are perfect, UJ = PJ/pe, so 

K = (pcfp"') x <Po/p"')' = Kx (.!!.._) = K, when p = l.OObar 
<PAIP"') X (pgfp"') p"' . 

K=Kx=~ 

(d) tJ.,G"' = -RTlnK = -(8.314JK- 1 mol- 1) x (298K) x ln(9.609) 

=l-5.6kJmol-'l 

At 1120 K, tJ.,G"' = +22 x 103 J mol- 1 

b.rG 9 

lnK(ll20K) =fiT= 
(22xl03 Jmol- 1) -

---'---,---,--_.:..._ __ = -2.363 
(8.3141 K 1 mol 1) x (1120K) 

K = e-2·363 = 9.41 x 10-2 

tJ.,H"' ( I I ) lnK2 =InK,--- ---
R T, Tt 

2D 

3.00 

+1.58 
4.58 
0.6742 

Total 

6.00 

6.79 
0.9999 
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Solve for Tz at In Kz = 0 (Kz = I) 

I RlnK1 I (8.314JK- 1 mol- 1) x (-2.363) I -
6 

_4 -=--+-= +--=7.3 X JQ 
T2 ll,HG T, (125 x IO'Jmol 1) 1120K 

T, = 11.4 X 103 K I 

d(ln K) -ll,HG 
Use d(l/T) = R 

We have InK = -2.04 - 1176 K ( ~) + 2.1 x 107 K3 ( ~ )' 

b.H
0 (1)2 

-T=-1176K+(2.Ixi07 K3)x3 'i 

T = 450K so 

- ll,:e = -1176K + (2.1 x 107 K3) X 3 (~)' = -86SK 

ll,H" = +(865 K) x (8.314! mol-l K- 1) = 17.191 kJ moi- 1 
I 

ll,G" = -RT InK 

( 
1176K 2.lxl07 K31 

= -(8.314JK-I moi- 1
) x (450K) x -2.04-

4
SOK + (

4
SOK)l 

= 16.55kJmol- 1 

b. HG- b. G 9 7.!9TkJmol- 1 -16.5SkJmol- 1 

6.rS9 = r r = =-20.79JK- 1 mol-l 
T ~OK 

= l-21 J K- 1 moi- 1 I 

U(s) + ~H,(g) ""UH3(s), llrG" = -RT InK 

At this low pressure, hydrogen is nearly a perfect gas, a(H2) = (pfpe'). The activities of the solids are 1. 

( 
p ) -3/2 3 p 

Hence lnK=ln - =--In-
, pe 2 pe 

e 3 p 
llrG = -RT In-2 pe 

= (~) x (8.314! K- 1 mol- 1) x (SOOK) x In ( 
139

Pas ) 
2 1.00 x 10· Pa 

= \-41.0kJ mol- 1 I 
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Kx = n Xj
111 [analogous to 7.16] 

J 

The relmion of K.r to K is established in Illustration 1.5 

n (PJ )'' [ . P!] Kx = pe 7.16 With llJ = pe 
J 

"'(PJ)L'"' (p)'[ ] = r; X1 pe [PJ = XJP] = Kx X pe V = ~ VJ 

Therefore, K.r = K (p/pe) -I•, K.r <X p- 1
• [K and p6 are constants] 

v = I + I - I - I = 0, thus I Kx(2 bar)= l(,(l bar) I 

N,(g)+O,(g).=2NO(g) K= 1.69x I0-3at2300K 

5.0g -
Initial moles N, = 

1 
= 0.2380 mol N, 

28.01 gmol 

2.0g - ' 
Initial moles o, = l = 6.250 X w-- mol o, 

32.00gmol 

N, o, NO 

Initial amount/mol 0.2380 0.0625 0 
Change/mol -z -z +2z 

Equilibrium amount/mol 0.2380- z 0.0625- z 2z 

Mole fractions 
0.2380- z 0.0625- z 2z 

0.300 0.300 0.300 

(2z/0.300)2 

K = K, = -,-;;==....::c::;....:..:.::...:.~=o----c-
. (0.2380- z) x (0.0625 - z) 

0.300 0.300 

= 4
z

2 
= 1.69 X 10-3 

(0.2380 - z)(0.0625 - z) 

4z2 = 1.69 x w-3{0.01488- 0.3005z + z2 } 

= 2.514 x w- 5 - (5.078 x w-•)z + (1.69 x w-3)z2 

4.oo- 1.69 x w-3 = 4.oo so 

4z2 + (5.078 x w-•)z - 2.5 T4 x w-5 = o 

Total 

0.300 
0 

0.300 

(I) 
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-5.078 X 10-4 ± {(5.078 X 10-4 ) 2 - 4 X (4) X (-2.514 X IQ-5)) 1/ 2 
z= 8 

= ~(-5.078 x w-4 ± 2.oo6 x w-2) 

z > 0 [z < 0 is physically impossible] so 

z = 2.444 x w-' 
2z 2(2.444 x w-3

) I _2 1 
XNO = -- = = 1.6 X 10 

0.300 0.300 

InK' = 6.rH" (.!. - _!_) 
K R T T' 

T=310K, T'=325K; 

<> Rln(~) 
so 6.rH = (.!. _ _!_) 

T T' 

K' 
letK = K 

" (8.314JK- 1 mol- 1
) 

Now6.JH = ((l(3IOK)-(1/325 K)) xlnK=55.84kJmoJ-
1

InK 

(a) K = 2 

I 
(b) K = 2 

6.1H" = (55.84 kJ mol- 1) x (In 2) = 139 kJ mol-l I 
6.,H" = (55.84 kJ mol- 1) x (In t) = 1-39 kJ mol-l I 

(a) 

NH,Cl(s) "'NH2(g) + HCI(g) 

p = p(NH,) + p(HCI) = 2p(NH,) [p(NH,) = p(HCI)] 

At 427 oc (700 K), 

At 459 oc (732 K), 

PJ 
a(gases) = e; 

p 
a(NH,CI, s) = I 

K= ~ x (608kPa)2 =19.241 
4 IOOkPa 

I (1115kPa)
2 ~ K=-X =~ 

4 IOOkPa 

(b) 6.,G" = -RTlnK [7.8] = (-8.314JK- 1mol- 1) x (700K) x (ln9.24) 

=l-12.9kJmol- 1 1 (at427°C) 

., Rln(K'(K) 
(c) 6.,H "' (l(T _ l(T') [7.25] 

(8.314JK- 1mol- 1)xln(31.08(9.24) I 
6 

-II 
"' =+I lkJmol 

( 1(700 K) - (1(732 K) 
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E7.12(b) The reaction is 

E7.13(b) 

For the purposes of this exercise we may assume that the required temperature is that temperature at 
which K =I, which corresponds to a pressure of I bar for the gaseous products. For K = 1, InK = 0, 
and 6-,G" = 0. 

Therefore, the decomposition temperature (when K = I) is 

6.rHe. 
T=--

6.rS9 

CuSO, · SH20 (s) .= CuS04 (s) + 5H20 (g) 

6-,H" = [(-771.36) + (5) x (-241.82)- (-2279.7)] kJ mo!- 1 = +299.2 kJmo!- 1 

6-,S" = [(109) + (5) x (188.83)- (300.4)] JK- 1 mo!- 1 = 752.SJK- 1 mo!- 1 

299.2x!03 Jmo!- 1 ~ 
Therefore, T = 

1 1 
= ~ 

752.8JK mol 

Question. What would the decomposition temperature be for decomposition defined as the state at which 
K = 1/2? 

Pbi2(s) .= Pbi2(aq) Ks = 1.4 x 10-8 

6-,G" = -RT!nKs = -(8.314JK- 1 mol- 1
) x (298.15K) x tn(t.4 x 10-8) 

= 44.83 kJ mol- 1 

6-,G" = 6.rG" (Phiz, aq) - 6.rG" (Phiz, s) 

6.rG" (Pbi2, aq) = 6-,G" 6. + 6.rG" (Pbi2, s) 

=44.8JkJmo!- 1 -!73.64kJmo!- 1 

= 1-128.8 kJ mol-l I 

E7.14(b) The cell notation specifies the right and left electrodes. Note that for proper cancellation we must equalize 
the number of electrons in half-reactions being combined. 

For the calculation of the standard emfs of the cells we have used Ee- = ~-E~, with standard electrode 
polentials from Table 7 .2. 

(a) R : Ag2CrO,(s) + 2e- -> 2Ag(s) + CrO~- (aq) +0.45 V 

L: Cl2(g) +2e--> 2C!-(aq) +1.36V 

Overall (R- L): Ag2CrO,(s) + 2C!-(aq)-> 2Ag(s) + CrO~-(aq) + (CI,g) -0.91 V 
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(b) R: sn'+(aq) + 2e---> sn'+(aq) 

L: 2Fe3+(aq) + 2e---> 2Fe2+(aq) 

Overall (R- L): Sn4+(aq) + 2Fe'+(aq)--> Sn2+(aq) + 2Fe3+(aq) 

(c) R: MnO,(s) + 4H+(aq) + 2e- --> Mn2+(aq) + 2Fe3+(aq) 

L: Cu2+(aq) + 2e- --> Cu(s) 

Overall (R- L) : Cu(s) + MnO,(s) + 4H+(aq)--> Cu2+(aq) + Mn2+(aq) 
+2H,O(I) 

+0.15V 

+0.77V 

-0.62V 

+1.23 v 
+0.34 v 

+0.89V 

COMMENT. Those cells for which £ 9 > 0 may operate as spontaneous galvanic cells under standard condi

tions. Those for which Ee < 0 may operate as nonspontaneous electrolytic cells. Recall that E 6 informs us 

of lhe spontaneity of a cell under standard conditions only. For other conditions we require E. 

E7.15(b) The conditions (concentrations, etc.) under which these reactions occur are not given. For the pur
poses of this exercise we assume standard conditions. The specification of the right and left electrodes 
is determined by the direction of the reaction as written. As always, in combining half-reactions 
to form an overall cell reaction we must write half~reactions with equal number of electrons to 
ensure proper cancellation. We first identify the half~reactions, and then set up the corresponding 
cell. 

(a) R: 2H20(1) + 2e---> 20H-(aq) + H2(g) 

L: 2Na+(aq) + 2e- --> 2Na(s) 

and the cell is 

or more simply 

I Na(s)INaOH(aq)IH,(g)IPt I 

(b) R: I,(s) + 2e- --> 21-(aq) 

L: 2H+(aq) + 2e---> H2(g) 

and the cell is 

or more simply 

I PtiH2(g)IW(aq)ll,(s)l Pt I 

(c) R: 2H+(aq)+2e---> H2(g) 

L: 2H20(I) + 2e--+ H,(g) + 20H-(aq) 

and the cell is 

Pt IH,(g)l H+ (aq), OW (aq)IH2 (g)IPt 

-0.83 v 

-2.71 v 

I +1.88V I 

+0.54V 

0 

1 +0.54 v 1 

O.OOV 

0.083 v 

1 o.o83 v 1 
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or more simply 

COMMENT. All of these cells have Ee- > 0, corresponding to a spontaneous cell reaction under standard 

conditions. If Ee- had turned out to be negative, the spontaneous reaction would have been the reverse of 
the one given, with the right and left electrodes of the cell also reversed. 

E7.16(b) (a) 
e RT 

E=E --lnQ v=2 
vF 

Q n IIJ 1 1 
= al = aH+acJ- [all other activities = 1] 

J 

=ala~= (y+b+>' x (y_b_)' [b =;here and below] 

e RT ( 4 ') e 2RT ( ) Hence,£=£ -
2

F In y±b = E -Fin y±b 

(b) 6,G= -vF£[7.27] =-(2) x (9.6485 X 104 Cmoi- 1) x (0.4658V) =l-89.89kJmol-ll 

(c) logY± = -\Z+Z-1Af 112[5.69] = -(0.509) x (0.010) 112 [I = b for HCI(aq)) = -0.0509 

Y± = 0.889 

2RT ( ) £ 0 = E +FIn (y±b) = (0.4658 V) + (2) X 25.693 X w-3 v X In (0.889 X 0.010) 

=I +0.223V I 

The value compares favorably to that given in Table 7.2. 

vFEe 
E7.17(b) In each case InK= ~ [7.30] 

(a) Sn(s) + CuSO,(aq) ;=' Cu(s) + SnS04(aq) 

R: 
L: 

Cu'+ (aq) + 2e- --. Cu(s) + 0.34 V l 
Sn'+ (aq) + 2e---. Sn(s) -0.14 V + 0.48 V 

(2) X (0.48 V) -
In K = = +37.4, 

25.693mV 

(b) cu'+(aq) + Cu(s) "'2Cu+(aq) 

R: 
L: 

cu'+ (aq) + e- --. Cu(aq) 
cu+ (aq) + e- --. Cu(s) 

-0.36V -
InK= 25.693 mY = -J4.0, 

K =I 1.7 X 1016 1 

+ 0.16 v l- 0 36 v 
+ 0.52 v . 

K = 18.2 x w-'1 
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E7.18(b) R: 2Bi3+(aq) + 6e---> 2Bi(s) 

P7.2 

(a) 

L: Bi2S3(s) + 6e---> 2Bi(s) + 3S2-(aq) 

Overall (R- L): 2Bi3+(aq) + 3S2-(aq)--> Bi2S3(s) v = 6 

InK = vFE" = 6(0.96 V) = 224 
RT (25.693 x I 0-3 V) 

In the above equation the activity of the solid equals I and, since the solution is extremely dilute, 

the activity coefficients of dissolved ions also equals I. Substituting [S2-] = 1.5[Bi3+] and solving 

for [Bi3+] gives [Bi3+] = 2.7 X w-zo M. Bi2SJ has a solubility equal I to 1.4 X 10-20 M.l 

(b) The solubility equilibrium is written as the reverse of the cell reaction. Therefore, 

Ks = K-i = lje224 = 15.2 x w-981. 

Solutions to problems 

Solutions to numerical problems 

This reaction is the reverse of the formation reaction. 

(a) t.,G" = - L'.rG e 

t.rG" = t.rH" - T t.rS" 

= -748501 mo!- 1 - 298 K x (-80.67 J K- 1 mo!- 1) 

= -5.08 X 104 J mol-l 

t.,G" 5.08 X 104 J mol-l 
InK= --[7.8] = - -20 508 

-RT -8.314JK 1 mol 1 x 298K- · 

K = l1.24 X 10-91 

(b) t.,H" = -t.rH" = 74.85 klmo!- 1 

t.,H" ( I I ) In K(50"C) = lnK(298K)- -R-
323

K-
298

K [7.25] 

(
7.4850 x 104 J mo!- 1

) ( _ ) _ 
= -20.508- I I X -2.597 X 10-4 = -!8.!70 

8.3145JK mol 

K(50"C) ='II-.2-9_x_!O-_---.,I 
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Draw up the equilibrium table 

CH, (g) H,(g) 

Amounts (1-a)n 2an 

Mole fractions 
1-a 2a 

--
l+a l+a 

c ~:)p 2a 
Partial pressures --

l+a 

K = n af'[7.16] = (PH,/P<>)2 
1 (PcH,/P"') 

1.24 X 10-9 = (2a J', ( .!!._) o, 4a2 p 
I -a- pB-

[a« I] 

1.24 x w-9 
= 11.8 x w-'1 a= 

4 X 0.010 

Le Chatelier's principle provides the answers. 

As pressure increases, a decreases, since the more compact state (less moles of gas) is favored at 
high pressures. As temperature increases the side of the reaction which can absorb heat is favored. 

Since ~rH 9 is positive, that is the right-hand side, hence a increases. This can also be seen from 
the results of parts (a) and (b), K increased from 25 °C to 50 °C, implying that a increased. 

CO,(g) .= CO(g) + 10,(g) 

Draw up the following equilibrium table 

Amounts 

Mole fractions 

Partial pressures 

co, 

(I - a)n 

(1-a) 

(I + (a/2)) 

(l-a)p 

(I+ (a/2)) 

co 

an 

a 

(I + (a/2)) 

ap 

(I + (a/2)) 

02 

-Cill 
2 

(l/2)a 

(I + (a/2)) 

ap 

2 (I+ (a/2)) 

K=(na/'J) [7.161 
1 equilibrium 

(Pco/p<>) X (po,/p<>) I/Z 

(pco,/p<>) 

(a)/((1 + (a/2)) x ((a/2))/(1 + (a/2)) 1/2 x (p/p") 1
1
2 

= 
(I - a)/(1 + (a/2)) 

cx3!2 
K"' -/2 [a « I at all the specified temperatures] 

~,G<> = -RT InK [7.8] 
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The calculated values of K and l:l.rG are given in the table below. From any two pairs of KandT, I:J.rH 
may be calculated. 

b.,H" ( I I ) lnK2 = lnK1 - -- --- [7.25] 
R T2 T, 

Rln(~) 
(;,- ;,) 

(8.3141 K- 1 mol- 1) x In , 
(

7.23 x w-6
) 

1.22 X 10 u 

[Exercise 7 .I 0] = ----.,.---,------'"'-,-------'--

c3~5K- 14~8K) 
= 13.00 x 105 1 mol- 1 I 

The calculated values of 6.rS 9 are also given in the table. 

T(K 1395 1443 1498 
"(10-4 1.44 2.50 4.71 
K(I0-6 1.22 2.80 7.23 
b.,G 6 /(k1mol- 1) 158 153 147 
b.,S"/(JK- 1 mol- 1) 102 102 102 

COMMENT . .6.rSe. is essentially constant over this temperature range but it is much different from its value at 

25°C. t::.rHe-, however, is only slightly different. 

Question. What are the values of l::.rH 9 and l:!..rSe- at 25 °C for this reaction? 

For Hz CO (I);= HzCO(g), K(vap) = : 
p 

b.,pG" = -RT In K(vap) = -RT In!!__ p"' = 750Torr 
p" 

= -(8.3141 K- 1 mol- 1) x (298 K) x In ( 
15

00Torr) = -1.72k1 mol- 1 

750Torr 

Therefore, for the reaction 

CO(g) + Hz(g) ;= HzCO(g), 

b.,G"' = ( +28.95) + ( -1.72) k1 mol- 1 = +27.23 k1 mol-l 

Hence,K = e(-27.23xto3Jmol- 1)/(8.314JK- 1 mol- 1)x(298K) = e-10.99 = 11.69 X w-51 
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P7.8 Draw up the following table using Hz(g) +I,;= 2HI(g) 

H, I, HI Total 

Initial amounts/mol 0.300 0.400 0.200 0.900 
Change/mol -x -X +2x 
Equilibrium amounts/mol 0.300- X 0.400- X 0.200 + 2x 0.900 
Mole fraction (0.300- x)/0.900 (0.400- x)/0.900 (0.200 + 2x)/0.900 

x(HI)2 (0.200 + 2x)2 
-~---'co-:- [p(J) - XJP] - - 870 [given] 
x(Hz)x(Iz) - - (0.300- x)(0.400- x) -

Therefore, 

(0.0400) + (0.800x) + 4x2 = (870) x (O.I20- 0.700x +x2
) or 

866x2 
- 609.80x + 104.36 = 0 

which solves tox = 0.293 {x = 0.411 is excluded becausex cannot exceed 0.300]. The final composition 

is therefore I 0.007 mol Hz I. 0.107 mol I,, and I 0.786 mol HI 1. 

P7.10 If we knew I:!J.rHG for this reaction, we could calculate 6.rHe-(HCIO) from 

And we can find !lrG6 from the equilibrium constant. 

K = exp( -ll,Ge / RT) so ll,G" = -RT InK, 

ll,G" = -(8.3145 X w-3kJK-l mol- 1) X (298K)In8.2 X w-' 

= 6.2 kJ mol- 1 

!lrH 6 
= 6.rG6 + T b..rS 6 

=6.2kJmol-l +(298K) x (16.38 X I0-3 kJK- 1 mol- 1), 

ll,H" = II. I kJ moi- 1 

Finally, 

llrH"(HCIO) = ~[ll,H" + llrH"(CI20) + llrH"(H,O)], 

I 
llrHe(HCIO) = z[ll.l +77.2+(-241.82)]kJmoi- 1 

= 176.8 kJ mol- 1 I 
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P7.12 The equilibrium to be considered is (A= gas) 

A(g, I bar)-=' A(sol'n) 

dinK 
b.,HB = -R x d (ljT) [7.23] 

InK = In c:) = 2.303 log c:) 
b.,H (H2) = -(2.303) X (R) x -- -5.39- --B d ( 768K) 

d(ljT) T 

= 2.303R x 768 K =I +14.7 kJ mol-l I 

G d ( 980 K) b.,H (CO)= -(2.303) X (R) X d(i7T) -5.98- -T-

= 2.303R x 980K =I +18.8kJmol- 1 I 

P7.14 (a) The cell reaction is 

E&= b.,GB [7.28 = +237.13kJmol-l =I+I.23VI 
vF ] (2)x(96.485kCmol- 1) · · 

(b) C,HIO(g) + !fO,(g)--+ 4CO,(g) + 5H,O(l) 

= (4) x (-394.36) + (5) x (-237.13)- (-17.03)]kJmol- 1 [Table2.7] 

= -2746.06 kJ mol- 1 

In this reaction the number of electrons transferred, vis not immediately apparent as in part (a). To 
find v we break the cell reaction down into half-reactions as follows 

R: lf02(g) + 26e- + 26H+(aq)--+ 13H20(1) 

L: 4CO,(g) + 26e- + 26H+(aq)--+ C4H10(g) + 8H,O(l) 

R- L: C4H10(g) + lf02 (g)--+ 4CO,(g) + 8H,O(l) 

Hence, v = 26. 
-b.GB +2746.06 kJ mol- 1 

Therefore, E = -- = --,--,_:__:c:.._,.:.--=-:=,.:::__:=.....,...,.-
1 

= I +1.09 V I 
vF (26) x (96.485 kC mol ) 
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e 25.693mY 
E = E - In Q [lllustratioll7 .10, 25 oq 

v 
Q = a(Zn2+)a2(Cl-) 

= Y+ (~) (Zn2+)y_: (:e) 
2 

(Cl-); b(Zn2+) = b; b(Cl-) = 2b; Y+Y_: = y~ 

Therefore, Q = y~ x 4b3 [b = :e here and below] 

25.693mY 3 3 (3) 1/3 and E = Ee-
2 

ln(4b Y±) = Ee- 2 x (25.693 mY) x ln(4 bY±) 

=I Ee- (38.54 mY) x ln(4 1i 3b)-(38.54 mY)ln(Y±) I 

(b) EG(Cell) = ~- rc = EG(Hg,CI,, Hg)- £G(Zn2+,zn) 

= (0.2676 Y) - ( -0.7628 Y) =I+ 1.0304 y I 

(c) t>.,G = -vFE = -(2) x (9.6485 x 104 Cmol- 1) x (1.2272 Y) = -236.81 kJ mol-l 

t>.,Ge = -vFEe = -(2) x (9.6485 x 104 C mol-l) x ( 1.0304 Y) = 1-198.84 kJ mol- 1 I 

InK= __ t>.,_G_e = 1.9884 x IO' J mol-' = 80.211 
RT (8.3145JK 1 mol 1) x (298.15K) 

K =16.84 xi034 1 

(d) From part (a) 

1.2272Y = 1.0304Y-(38.54mY) x ln(41i 3 
X 0.0050)-(38.54mY) X lny± 

In = _ ( 1.2272 Y) - ( 1.0304 Y) - (0.1864 Y) = _
0

_
2698

. 
Y± 0.03854 Y ' Y± =10.763 I 

(e) logy±= -IZ-Z+1Af'12 [5.69] 

l"'(b;) I= 2 L.,.Zi bG [5.70] 

' 
b(Zn2+) = b = 0.0050molkg- 1 b(Cl-) = 2b = O.O!Omolkg- 1 

I= i[(4) x (0.0050) + (0.010)] = 0.015 

logY±= -(2) x (0.509) x (0.015) 112 = -0.!25; Y± =I 0.75 I 

This compares remarkably well to the value obtained from experimental data in part (d). 

t>. s = _ (at>.,G) 
<O ' aT 

p 

=vF(aE) [7.39]=(2)x(9.6485x I04 Cmol- 1)x(-4.52x w-4 yK- 1) 

aT " 

t>.,H = t>.,G + T t>.,S = ( -236.81 kJ mol-l) + (298.15 K) x ( -87.2 J K- 1 mol- 1
) 

=l-262.4kJmol-'l 
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P7.18 PtiH2(g)INaOH(aq), NaCI(aq)IAgCI(s)IAg(s) 

Hz(s) + 2AgCI(s)-> 2Ag(s) + 2Cl-(aq) + 2H+(aq) v = 2 

E = £ 9
- ~;In Q, Q = a(H+)2a(CI-)2 rJ/p0 = I] 

= Ee _ RT lna(H+)a(Cl) = Ee _ RT In Kwa(Cl-) = E" _ RT In Kwr±b(Cl-) 
F F a(OH ) F Y±b(OH ) 

= Ee _ RT In Kwb(Cl-) = Ee _ RT InK _ RT In b(Cl-) 
F b(OH ) F w F b(OH ) 

e RT RT b(CI-) ( -lnKw) 
= E +(2.303)- X pKw - -In pKw = -log Kw = ---

F F b(OH ) 2.303 

£ 9 = r.- £t = £ 9 (AgCI, Ag)- £ 9 (H+ /Hz)= +0.22 V- 0 [Table 7.2] 

We then draw up the following table with the more precise value for £ 6 = +0.2223 V [See the solution 
to Problem 10.8, 7th edition] 

8/"C 20.0 25.0 30.0 

E/V 
(2.303RT I F) 

v 

1.04774 1.04864 1.04942 

0.05819 

114.231 

0.05918 0.06018 

pKw 14.01 13.79 

dIn Kw 6.rH 9 

-- = -- [7.23] 
dT RT2 

d 
Hence, t>.,H 0 = -(2.303)RT2 dT(PKw) 

. d pKw t>.pKw 
then w1th -- "' --

dT t>.T 

13.79- 14.23 
t>.,H 9

"' -(2.303) X (8.314JK-I mol-l) X (298.15K) 2 
X --,-;:-o;-

IOK 

=I +74.9kJmol- 1 I 

t>.,G 9 = -RT In Kw = 2.303 RT X pKw =I +80.0 kJ mol-l I 

.6.rSe = .6.rHs ~ 6.rGe- =1-n.IJK-t mol-t! 

See the original reference for a careful analysis of the precise data. 
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P7.20 The method of the solution is first to determine 6.rG6
, l::..rH 9

, and t::..rS 0 for the cell reaction 

!H,(g) + Agel(s)-+ Ag(s) + Hel(aq) 

and then, from the values of these quantities and the known values of llrGe, !::!.rHe-, and 5 6
, for all the 

species other than Cl- (aq), to calculate llrG 9
, llr H", and S9 for el- (aq). 

At 298.15 K (25.00 "C) 

£ 9 (V = (0.23659)- (4.8564 X 10-4) X (25.00)- (3.4205 X 10-6) X (25.00)2 

+ (5.869 X IQ-9 ) X (25.00)3 = +0.22240 V 

Therefore, tlG9 = -(96.485kemol- 1) x (0.22240V) = -21.46kJmol- 1 

., (all,G") (a£") (a£") "e b.rS = - --- = -- x vF = vF --
aT " ar " ae p K 

[de;oe = dTfKJ 

(aE" ;ae) 
v " = ( -4.8564 x w-4 ;oq - (2) x (3.4205 x w-6e /("CJ'l 

+ (3) X (5.869 X 10-982
( ("en 

(aE"' ;ae) 
v;oe "= ( -4.8564 x w-•)- (6.8410 x w-6 (e;oe)) + (u6o7 x w-8 (e;oe)') 

Therefore, at 25.00 "e, 

- = -6.4566 X 10-4 V re (
a£") 

ae " 

and 

- = (-6.4566 x I0-4 v;oe) x ("e(K) = -6.4566 X I0-4 vK-I 
(

a£") 

ar " 

Hence, from equation (a) 

= -(21.46 kJ mol-l)+ (298.15 K) x (-62.30 J K- 1 mol- 1) = -40.03 kJ mol-l 

For the cell reaction 

!Hz(g) + Agel(s)--> Ag(s) + Hel(aq) 

ll,G" = llrG 9 (H+) + llrG 9 (el-)- llrG"(Agel) 

= llrG" (e 1-) - llrG"'(Agel) [ llrG 9 (H+) = 0] 

(a) 
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Hence,t.rG"(CI-) = t.,G" + t.rG"(AgCI) = [(-21.46)- (109.79)kJmol- 1] 

=l-131.25kJmol- 1 1 

Similarly, t.rH"(Cl-) = t.,H" + t.rH" (AgCI) = ( -40.03) - (127.07 kJ mol- 1) 

=l-167.10kJmol- 1
1 

For the entropy of Cl- in solution we use 

with S" (H+) = 0. Then, 

S" (CI-) = t.,S" - S"(Ag) + iS"(H2) + S"(AgCI) 

= (-62.30)- (42.55) + (1) x (130.68) + (96.2) =I+ 56.7 J K- 1 mol- 1 I 

P7.22 Electrochemical cell equation: 

iH2(g,l bar)+ AgCI(s) ;= H+(aq) + Cl-(aq) + Ag(s) 

wheref(H2) = I bar= p" aC!- = YCI-b 

Weak acid equilibrium: 

where baH = ba = b 

Ionic strength (neglect bH+ because bH+ <<b): 

according to the Nernst equation [7 .29) 

E = £"- RT In (aH + aCI-) = E"- RT ln(IO) log(aH + aCI-) 
F [(H2/P" F 

F G (K,)'BHYCI-b) =,-c-c-(E- E ) = -log(awYCI-b) =-log 
RTln(lO) YB 

= pK, - log(b) - 21og(Y±) 

F " 2Av'b (E - E ) = pK, - log(b) + rc - 2kb 
RTln(lO) I +B-vb 

where A = 0.5091. 
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The expression to the left of the above equality is experimental data that is a function of b. The parameters 

pKa. 8, and k on the right side are systematically varied with a mathematical regression software until 

the right side fits the left side in a least squares sense. 

pK, = 6.736, B = 1.997 kg0·5moi-0·5 

k = -0.121 kgmol- 1 

( 
-A/l/2 +kb) 

Y± = 10 1+811/1 

P7.24 (a) The Nemst equation appropriate to the fluoride selective electrode is 

RT 
E = E,p + f3 F ln(aF- + kF-.OH- a ow) 

at 298 K, this may be written, after setting /3 :::::::: 1, 

E = E,p + 0.05916 V log(aF- + kF-.owaoH-) 

(b) At high pH, aoH- is large, and the second tenn inside the parentheses may be a significant fraction 

of aF-. At low pH, p- is converted to HF, to which the electrode is insensitive. The activities of the 
species involved are related to each other through Ka. 

KaaHF 3.5 X 1 o-4 aHF 
aF- =--= 

aH+ aH+ 

E = E,p + 0.05916 V log [ Gf- + kF-,OH- (:H:)] 

In the following analysis, let us set all activity coefficients equal to I. Let us draw up the following table 

forE- Eap 

[F-]\pH 4 5 6 7 8 9 

w-' -0.414 -0.414 -0.414 -0.412 -0.396 -0.353 
w-6 -0.355 -0.355 -0.355 -0.355 -0.353 -0.337 
w-5 -0.296 -0.296 -0.296 -0.296 -0.296 -0.293 
w-• -0.237 -0.237 -0.237 -0.237 -0.237 -0.236 
w-' -0.177 -0.177 -0.177 -0.177 -0.177 -0.177 
w-2 -0.118 -0.118 -0.118 -0.118 -0.118 -0.118 
w-' -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 

0 0 0 0 0 0 

We see that at pH :::: 8 the emf responds linearly to log aF-. At pH = 5 and below, the ratio 

GHF GH+ GH+ w-5 
= = 

3.5 X 10 4 
4 = 0.029 

Gf- K, 3.5 X 10 
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indicates that a significant fraction (>0.03) ofF-:- has been removed from the test solution. Therefore, 
the acceptable pH range for the use of this electrode is 5 < pH < 8. 

Solutions to theoretical problems 

T' 

t>,H' = t>,H + lr t>,C,dT [2.36] 

T' , /, ~:>,c, . . 
t>,S = t>,S + --dT [3.19, w1th t>,S m place of S] 

T T 

, T' 6.a 6.c T' 6.c 
= !>a - T t>b + T t>b - -- + - - --

T T2 T3 

[T' (1 - T') t>,C,dT =(!>a-T' t>b)(T'- T) + ~(T"- T2)t>b- T' !>a In T' 
Jr T 2 T 

+ t>c (_I_ - _!_) - ~ T' t>c (_I_ - -1
-) 

TT' 2 T2 T'2 

I I T' 
where" = T - T - T In -

T 

I 
f3 = -(T'2 - T2)- T'(T'- T) 

2 

y =_I_-_!_+ ~T' (-1-- _I_) 
TT'2 T'2 T2 

For water, 

t>rG"(T) = -237.13 kJ moi- 1 
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I 
b.a = a(H20l- a(H,)- 2a(02) = (75.29- 27.88- 14.98) J K- 1 moi- 1 

= +33.03 J K- 1 mol- 1 

b.b = [(0)- (3.26 x w-3)- (2.09 x w-3)] J K-2 mol- 1 = -5.35 x w-3 J K-2 moi- 1 

b.c = [(0)- (0.50 x !05) + (0.83 x !05)]J K mol-l = +0.33 x 105 J K mol-l 

T = 298 K, T' = 372K, so 

ex= -8.5 K, f3 = -2738K2, y = -8.288 x w-5 K- 1 

and so 

b.rGe (372 K) = ( -237.13 kJ mol- 1) + ( -74 K) x ( -163.34 J K- 1 mol-l) 

+ (-8.5K) x (33.03 x 10-3 kJK-I moi- 1) 

+(-2738K2) x (-5.35 x 10-6 kJK-2 moi- 1) 

= [( -237.13) + (12.09) - (0.28) + (0.015) - (0.003)] kJ mol- 1 

= 1-225.31 kJmoi- 1 I 

Note that the f3 and y terms are not significant (for this reaction and temperature range). 

Solutions to applications 

P7.28 (a) ATPhydrolysis at physiological pH, ATP(aq)+H20(1) --+ ADP(aq)+Pj (aq)+H30+(aq), converts 
two reactant moles in three product moles. The increased number of chemical species present in 

solution increases the disorder of the system by increasing the number of molecular rotational, 

vibrational, and translational degrees of freedom. This is an effective increase in the number of 

available molecular states and an increase in entropy. 

(b) At physiological pH the oxygen atoms of ATP are deprotonared, negatively charged, and the molecule 
is best represented as ATp4-. The electrostatic repulsions between the highly charged oxygen atoms 

of ATp4- is expected to give it an exergonic hydrolysis free energy by making the hydrolysis 

enthalpy negative. Also, the deprotonated phosphate species, Pi(aq), produced in the hydrolysis 

ATP has more resonance structures than ATp4-. Resonance lowers the energy of the dissociated 

phosphate making the hydrolysis enthalpy more negative and contributing to the exergonicity of the 

hydrolysis. 

The electrostatic repulsion between the highly charged oxygen atoms of ATp4- is a hypothesis that is 

consistent with the observation that protonated ATP, H4ATP, has an exergonic hydrolysis free energy 

of smaller magnitude because the negative repulsions of oxygen atoms are not present. Likewise for 

MgATP2- because the Mg2+ ion lies between negatively charged oxygen atoms, thereby, reducing 

repulsions and stabilizing the ATP molecule. 
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Repulsion reduces the stability 
of ATP and contributes to 
exothermicity of hydroysis. 

P7.30 Refer to Impact 17.2 for information necessary to the solution of this problem. The biological stand
ard value of the Gibbs energy for ATP hydrolysis is "' -30 kJ mol-l. The standard Gibbs energy of 
combustion of glucose is -2880 kJ mol- 1. 

(a) If we assume that each mole of ATP formed during the aerobic breakdown of glucose produces 
about -30kJmol- 1, then 

38 x (-30kJmol- 1) r-.;;;;;;l 
efficiency = 1 x 100%"' ~ 

-2880kJmol 

(b) For the oxidation of glucose under the biological conditions of 
pco, = 5.3 X 10-2 atm pQ, = 0.132 atm, and [glUCOSe) = 5.6 X IQ-2 mol dm -) we have - -

A,G' = A,G"' + RT In Q 

where 
Q = (pco,IP"')6 = (5.3 x w-2

)
6 

[glucose l X (po, I P"' )9 "0"5 .-o6-x'-:-:l 0,...,2-x-;:(0"'.1:::3:::2:n)9 

= 32.5 

Then 

A,G' = -2880kJmol- 1 +8.314JK- 1 mol-t x 310K x ln(32.S) 

= 1-2871 kJ mol- 1 I 

which is not much different from the standard value. 

For the ATP -+ ADP conversion under the given conditions 

A,G' = A,G"' + RTin g~ 

m [ADP][Pi][H,O+] 
where Qw = = 

[ATP] 
and 

1 x 1 x w-7 = 
10

_7 
I 

1.0 X w-• X 1.0 X 10-4 X IQ-7·4 
Q' = = 10-t t.4 

1.0 X 10 4 
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then 

= -30kJmol- 1 +8.314JK- 1 mol-l x 310K x (-10.1) 

= J-56kJmol- 1 j 

With this value for t1rG' the efficiency becomes 

38 x (-56kJmol- 1) r:;:;;;;:l 
efficiency = 1 = ~ 

-2871 kJmol 

(c) The theoretical limit of the diesel engine is 

T, 873 K 
e = I - - = I - -- =55% 

Th 1923 K 

75% of the theoretical limit is 41%. 

We see that the biological efficiency under the conditions given is greater than that of the diesel 
engine. What limits the efficiency of the diesel engine, or any heat engine, is that heat engines 
must convert heat (q ~ 6.cH) into useful work (wadd.max = LlrG). Because of the Second Law, a 
substantial fraction of that heat is wasted. The biological process involves D..rG directly and does 

not go through a heat step. 

Refer to Impact 17 .2. llpH=-1.4 

The contribution to .6.Gm from the potential difference is now 

llGm = Fll<P = 9.6485 X 104 Cmol-l X 0.070V = +6.8kJmol-l 

The totalllGm is then+ 8.0 kJ mol- 1 + 6.8 kJ mol- 1 or 14.8 kJ mol- 1• 

For4molH+.t.G=4 x 14.8kJmol- 1 =+59.2kJ 

Therefore, the amount of ATP that could be synthesized is 

59.2kJ r:;-:::;l 
-------.1 = 1.9 mol "' ~ 
31 kJmol 

(a) The equilibrium constant is given by 
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A plot of InK against 1/T should be a straight line with a slope of -6.rHe- fR and a y-intercept of 
!',.,S0 1 R (Figure 7.1 ). 

20 
.. J'- -17.321 +8.7119x_ ..... / . ..... ' 

R' ~ 0.993 ' ...... , ........ .. ..... ...... 18 
. . ..... 

16 I r ·--·-·· v 1······ ;!__Y ...... 
,_ ..... .... 

'• 
/ /" ........... ' ....................... 

1_¥ ..... , .... . ······ 

' T ·: -·-
. . ...... 

14 

12 

10 
3.2 3.4 3.6 3.8 4.0 4.2 4.4 

1000/(T/K) Figure 7.1 

So {',.,H 0 = -R X slope=- (8.3145 X w-3 k1 mol-l K- 1
) X (8.71 X 103 K) 

= l-72.4k1 mol- 1 I 

and !',.,S0 = R x intercepl = (8.3145 1 K- 1 mol- 1) x ( -17.3) = 1-1441 K- 1 mol- 1 I 

(b) !',.,He = !',.,H 0 ((ClO),) - 2/',.rHe (CIO) so /',.rH"' ((CIO),) = !',.,He+ 2!',.rH 0 (CIO). 

/',.rH 0 ((CIO),) = [ -72.4 + 2 ( 101.8)] k1 mol- 1 =I + 131.2 kJ mol- 1 I 

S 0 ((CIO),) = [ -144 + 2 (226.6)] 1 K- 1 mol- 1 =I +309.21 K- 1 mol- 1 I 

P7.36 ~N2(g) + ~H2(g)--> NH3(g); !',.v = -1/2 

First, calculate the standard reaction thermodynamic functions with formation thermodynamic properties 

found in the appendix (Table 2.7). 

!',.,H 0 (298) = -46.11 k1 and 

Use appendix information to define functions for the constant pressure hem capacity of reactants and 
products (Table 2.2). Define a function l!..rC1~(T) that makes it possible to calculate 6.rCp at I bar and 

any temperature (eqn 2.37). Define functions that make it possible to calculate the reaction enthalpy 
and entropy at I bar and any temperature (eqns 2.36 and 3.19). 

!',.,H 0 (T) = !',.,H"(298) + {T !',.,C1~(T)dT 
J198.15 K 

T !',.,C"(T) 
!',.,S0 (T) = !',.,S 0 (298) + { P dT 

}298.l5K T 

For a prefect gas reaction mixture b.rH is independent of pressure at constant temperature. Consequently, 
b.rH(T,p) = b.rHB(T). The pressure dependence of the reaction entropy may be evaluated with the 
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expression: 

l:!.,S(Tp) = l:!.,S"'(T) + L v { 
Products-Reactants 1 bar 

(as"') dP ap T 

[P 
= l:!.,S

0
(T)- L v }, - dP [Table 3.5] (av"') 

ar Jl Products- Rcacmms 1 bar 

= l:!.,S
0
(T)- L v [' 

Products-Rcucmms 1 bar 

R 
-dp 
p 

= l:!.,S
0
(T)- [ L v] R In (__I!_) 

!bar 
Products-Reactants 

= l:!.,S 0 (T)- lj2R In (__!!_) 
I bar 

The above two eqns make it possible to calculate l:!.rG(T,p). 

l:!.,G(T,p) = l:!.,H(T,p)- Tl:!.,S(T,p) 

Once the above functions have been defined on a scientific calculator or with mathematical software on 
a computer, the root function may be used to evaluate pressure where l::!.rG(T,p) = -5001 at a given 

temperature. 

(i) (a) and (b) perfect gas mixture: 

ForT= (450 + 273.15) K = 723.15 K, root(l:!.,G(723.15 K,p) + 5001) = 1156.5 bar I 
ForT = (400 + 273.15) K = 673.15 K, root(l:!.,G(673.15 K,p) + 5001) = 181.8 bar I 

For a van der Waals gas mixture 6.rH does depend upon pressure. The calculational equation is: 

['' 
= l:!.,H

0
(T) + L V }, 

Products-Rcact:tnts 1 bar 

(
&Hm) d 
ap ,. P 

[Theoretical Problem 3.28] 

( 
RT a ) and Vm(T,p) =root P- --- +--, 

V111 -b V1;; 

The functional equation for 6.rS calculations is: 

l:!.,S(T,P) = l:!.,S"'(T)- L v [ (aav;') dp 
Produc!s-Rcactants 1 bar Jl 

where (& Vmf&T)p and Vm(T,p) are calculated as described above. As usual, l:!.,G(T,p) = l:!.,H(T,p)

T l:!.,S(T,p). 
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(a) and (b) van der Waals gas mixture: 

ForT = 723.15 K, root(l>,G(723.15 K,p) + 5001) = 1132.5 bar I 
ForT = 673.15 K, root(L>,G(673.15 K,p) + 5001) = 173.7 bar I 

van dcr Waals gus approximalion 
1000 ,-""""---.----r ... '-'----,-----,-----, 

500 

723K 

0 

-500 

-IOOO l__j6o,-------,~8o---~-,~oo.,.----,~12"o ___ t,-J4""o----:-'16·o 

p/bar Figure 7.2 

(c) !lrG(T,p) isotherms I confirm I Le Chatelier's principle. Along an isotherm, b.rG decreases as pres

sure increases. This corresponds to a shift to the right in the reaction equation and reduces the stress 
by shifting to the side that has fewer total moles of gas. Additionally the reaction is exothermic, so 
Chatelier's principle predicts a shift to the left with an increase in temperature. The isotherms confirm 
this as an increase in 6.rG as temperature is increased at constant pressure. See Figure 7.2. 



r·. - . .-
1 

PART 2 Structure 





8 Quantum theory: 
introduction and principles 

Answers to discussion questions 

08.2 A successful theory of black~body radiation must be able to explain the energy density distribution of 
the radiation as a function of wavelength, in particular, the observed drop to zero as A --+ 0. Classical 
theory predicts the opposite. However, if we assume, as did Planck, that the energy of the oscillators 
that constitute electromagnetic radiation are quantized according to the relation E = nhv = nhc /A, 
we see that at short wavelengths the energy of the oscillators is very large. This energy is too 

large for the walls to supply it, so the short-wavelength oscillators remain unexcited. The effect 
of quantization is to reduce the contribution to the total energy emitted by the black-body from 

the high-energy short-wavelength oscillators, for they cannot be sufficiently excited with the energy 

available. 

08.4 In quantum mechanics all dynamical properties of a physical system have associated with them a cor
responding operator. The system itself is described by a wavefunction. The observable properties of the 

system can be obtained in one of two ways from the wavefunction depending upon whether or not the 
wavefunction is an eigenfunction of the operator. 

When the function representing the state of the system is an eigenfunction of the operator Q, we solve 

the eigenvalue equation (eqn 8.25b) 

Qlf/ = wlf/ 

in order to obtain the observable values, w, of the dynamical properties. 

When the function is not an eigenfunction of Q, we can only find the average or expectation value of 

dynamical properties by performing the integration shown in eqn 8.34. 

(Q) = f lf/'Qif/dr. 

08.6 See Figs. 8.16, 8.26-8.30 of the text. 
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Solutions to exercises 

E8.1 (b) The de Broglie relation is 

h h h 6.626 X 10-34 J S 
!.. = - = - so v = - = -:-=-==-----=~~_.:,....:..:'--:::-':':_--:-::,..----, 

p mv m!.. (1.675 x 10 "kg) x (3.0 x 102m) 

v = 11.3 X w-s ms- 1 I extremely slow! 

E8.2(b) The moment of a photon is 

h 6.626 X 10-
34

J s I I 
p =- = = 1.89 x 10-27 kgms- 1 

!.. 350 x 10 9 m 

The momentum of a particle is 

P 1.89 x 10-27 kgms- 1 
p = mv so v =- = 

m 2(1.0078 x 10-3 kgmol- 1f6.022 x l02lmol- 1) 

v = rl 0_.5_6_5 _m_s __ .,.., I 

E8.3(b) The uncertainty principle is 

E8.4(b) 

so the minimum uncertainty in position is 

/t n 1.0546 X 10-34 J S 
t.x = - = -- = ::-:::--:-:----:-::-=-:-:=::..:.;:...;:::::-=,:==--;;c;:-::--=----.:-

2t.p 2mt.v 2(9.11 X 10 31 kg) X (0.000010) X (995 X 103 ms 1) 

he 
E = hv = -· 

!..' 
£(per mole) 

he = (6.626 08 x 10-34 J s) x (2.997 92 x 108 m s- 1) = 1.986 x 10-25 J m 

NAhe = (6.022 14 x 1023 mol- 1) x (1.986 x 10-25 J m) = 0.1196J m mol-l 

1.986 x 10-25 Jm 0.1196Jmmol- 1 
Thus, E = !.. £(per mole) = !.. 

We can therefore draw up the following table 

!.. E/J £/(kJ mol- 1) 

(a) 200 nm 0.93 X 10- 19 598 
(b) 150 pm 1.32 X 10- 15 7.98 X 105 

(c) 1.00 em 1.99 X 10-23 0.012 
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Assuming that the 4He atom is free and stationary, if a photon is absorbed, the atom acquires its 
momentum p achieving a speed v such that p = mv. 

(a) 

(b) 

(c) 

v = !!. m = 4.00 x 1.6605 x w-21 kg = 6.642 x w- 27 kg 
m 
h 

p=
A 

6.626 x w-34 1 s 
p = = 3.313 X J0-27 kgms-l 

200 x 10 9 m 

- p -3.313 X w-27
kgms-

1 -I -II 
v - - - 27 - . 0.499 m s . 

m 6.642 x 10 kg 

6.626 x w-34 1 s -
p= =4.417 X J0-24 kgms-l 

150xi012m 

v = !!_ = 4.417 X J0-27 kg m S-l 
m 6.642 x 10 27 kg 

6.626 x w-34 1 s 
p = = 6.626 X J0-32 kgms-l 

1.00 x 10 2 m 

p 6.626xl0-32 kgms- 1 I _6 -II 
v = - = 27 = 9.98 x 10 m s . 

m 6.642 x 10 kg 

Each emitted photon increases the momentum of the rocket by hfA. The final momentum of the rocket 

will be NhjA, where N is the number of photons emitted, so the final speed will be Nh/Amrock«· The 
rate of photon emission is the power (rate of energy emission) divided by the energy per photon (he /A), 

so 

N = t:: and v = ( t::) X ( Am:ket) = cm::ket 
(IO.Oyr) x (365dayyr- 1) x (24hday- 1) x (3600sh- 1) x ( 1.50 X J0-3 W) 

v 
(2.998 X JOB m S I) X (I 0.0 kg) 

= [158 m s -I [ 

Rate of photon emission is rate of energy emission (power) divided by energy per photon (he/A) 

(a) rate = 
PA (0.10 W) x (700 x w-9 m) 1 11 -I 1 

= = 3.52 X 10 S 
he (6.626 X J0 34 J S) X (2.998 X JOB m S I) 

(b) rate (l.OW)x(700x w-9
Js) 

1
) =1 3.52 x 1018 s-ll 

(6.626 X 10 34 J s) x (2.998 x JQB m s · · 

Conservation of energy requires 

Ephotoo =<I>+ EK = hv =he/A so EK =he/A- <I> 

(
2£ )1/2 

and EK = ~mev2 so v = ~ 
me 
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(6.626 x I0~34 Js) x (2.998 x 108 ms~ 1 ) 
EK = -(2.09eV) X (1.60 x 10~ 19 JeV~ 1 ) 

650 x 10 9 m 

But this expression is negative, which is unphysical. There is no kineLic energy or velociLy because 
the photon does not have enough energy to dislodge the electron. 

(6.626 X 10~34 J s) X (2.998 X I 08 m ,~I) 
EK = -(2.09eV) x (1.60x 10~ 19 JeV~ 1 ) 

195 x 10 9 m 

=16.84 X 10~ 19 )I 

(
2(6.84 X 10~ 19))) l/2 

and v = 
9.JJ X 10 31 kg 

=11.23 xl06 m ,~I~ 

£ = hv = lzjr, so 

(a) E = 6.626 x 10~34 J s/2.50 x 10~ 15 s = 12.65 x 10~ 19 J = 160 kJ mol ~I I 

(b) E = 6.626 x 10~34 J s/2.21 x 10~ 15 s = 13.00 x 10~ 19 J = 181 kJ mol ~I I 

(c) E = 6.626 X 10~34 J s/1.0 X 10~3 s = 16.62 X 10~31 J = 4.0 X 10~ 10 kJ mol ~I I 

E8.1 O(b) The de Broglie wavelength is 

h 
A=~ 

p 

The momentum is related to the kinetic energy by 

The kinetic energy of an electron accelerated through IV is 1 eV = 1.60 x w- 19 J, so 

6.626 X 10~34 ) S 
(a) A=-----------------...,---., 

(2(9.11 X 10~ 31 kg) X (100eV) x (1.60 x 10~19 JeV~ 1 )) 1 /2 

6.626 X 10~34 ) S 
(b) A=--------------------,---,-, 

(2(9.llxl0~3 lkg) X (1.0xl03eV) x (1.60 X 10~19JeV~ 1 )) 1 /2 

6.626 X 10~)4 ) S 
(c) A=-----------------------.,"" 

(2(9.1lxl0~31kg) X (100 X I03eV) X (1.60 X IO~I9JeV~ 1 )) 112 

= 13.88 x 10~ 12 m I 
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E8.11(b) The upper sign in the following equations represents the math using theA.+ iS operator. The lower sign 

is for the A - iB operator. T is a generalized coordinate. 

f 1/t,*IA ± iB[l/tjdT = f 1/t,*IA[l/tjdT ±if 1/t,'IB[l/tjdT 

= If lft/ lA 11/t;dr r ± i If lft/ lEI 1/t;d T r A and iJ are hermitian [8.30] 

= If lft/IAil/t;dqo if lft/IBil/t;dr r 
=If lft/IA 'f iBII/J;dr r 

This shows that the A ± iS operators are nol hermitian. If they were hermitian, the result would be 

[ !1/t/IA ± iB[lft;dr l' 
E8.12(b) The minimum uncenainty in position is I 100 pm 1- Therefore, since 6.xb.p =:::: th 

ll 1.0546 x 10-34 1 s 
t:,.p > -- = .,--~-...,.-,---.,.,----,- = 5.3 x 10-25 kg m s -I 

- 2/:,.x 2(100 x 10 12 m) 

6.v = t:,.p 

Ill 

5.3 x 10-25 kg m ,-I 

9.11 X 10 Jlkg 
=15.8 x 105 m ,-'1 

E8.13(b) Conservation of energy requires 

I 2 
Ephmon =£binding+ 2mcv = lw =he/A so 

(6.626 x 10-34 J s) x (2.998 x 108 m s- 1) 
andEbinding = 

121 
x 

10 12 m 

- t(9.11 X 10-Jl kg) X (5.69 X 107 ms- 1) 2 

= 11.67 X 10-16 J I 

COMMENT. This calculation uses the non-relativistic kinetic energy, which is only about 3 percent less than 

the accurate {relativistic) value of 1.52 x10-15 J. In this exercise, however, Ebinding is a small difference of 

two larger numbers, so a small error in the kinetic energy results in a larger error in Ebinding: the accurate 

value is Ebinding = 1.26 x10- 16J. 

E8.14(b) The qualily .d1.Q2 - .d2.Q1 [Illustration 8.3] is referred to as the commutator of the operators .d1 and 
.d2. In obtaining the commutator it is necessary to realize that the operators operate on functions; thus, 

we form 

.Q, Q,j(x) - Q2Q,j(x) 

ll d 
Px=Tdx 

Therefore a=(.\-+ li!) and at=('·- It~) 
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Then aatf(x) = ~ (x + li_<!_) x (x- n_<!_)f(x) 
2 dx dx 

• I (· d ) (· d ) anda'af(x) = z x-/idx x x+lidx f(x) 

The terms in X2 and (d/dx)2 obviously drop out when the difference is taken and are ignored in what 

follows; thus 

. l(,d d) aa'f(x) = - -x/i- + n-x j(x) 
2 dx dx 

. l(d d) a'af(x) =- xli-x -n-x f(x) 
2 d dx 

These expressions are the negative of each other, therefore 

t t d, ,d 
(aa - (/ a)j(x) = /i-if(x)- nx-f(x) 

dx dx 

( 
d ' ' d ) = It -x- x- j(x) = lif(x) 
dx dx 

Therefore, (aat -at a) =0 

Solutions to problems 

Solutions to numerical problems 

C? he 
A max T = --=.where c2 = -

5 k 
Therefore, Anmx T = hcj5k and, if we find the mean of the A max T values, we can obtain h from the 

equation h = 5kfc 0-maxT)mean· We draw up the following table. 

ere 1000 1500 2000 2500 3000 3500 

TIK 1273 1773 2273 2773 3273 3773 

Amaxlnm 2181 1600 1240 1035 878 763 

lcm,T I (106 nm K) 2.776 2.837 2.819 2.870 2.874 2.879 

The mean is 2.84 x !06 nm K with a standard deviation of0.04 x I06 nm K 
(5) x (1.38066 x 10-23 J K- 1) x (2.84 x 10-3 m K) 1 34 1 

and h = 
8 1 

= 6.54 X I o- J s 
2.99792 x 10 m s 

COMMENT. Planck's estimate of the constant h in his first paper of 1900 on black body radiation was 

6.55 x 1 o-27 erg sec(1 erg = 1 o-7 J) which is remarkably close to the current value of 6.626 x 1 o-34 J s 

and is essentially the same as the value obtained above. Also from his analysis of the experimental data he 
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obtained values of k (the Boltzmann constant), NA (the Avogadro constant), and e (the fundamental charge). 

His values of these constants remained the most accurate ror almost 20 years. 

P8.4 The full solution of the SchrOdinger equation for the problem of a panicle in a one-dimensional box 

is given in Chapter 9. Here we need only the wavefunction which is provided. It is the square of the 

2 2 2 1rx 
wavefunction that is related to the probability. Here lf! = - sin - and the probability that the particle 

L L 
will be found between a and b is 

P(a,b) = 1b if/2dx [Section 8.4] 

" 

l

b 
2 b . 2 TCX X I . 2nx 

= L 1 sm Ldx = (L- 2rr sm L) a 

= b- a _ ~ (sin 2rrb _sin 2rra) 
L 2rr L L 

L = lO.Onm 

(a) ?(4.95, 5.05) = - - - sm - sm -0.10 I (. (2rr) x (5.05) . .:_(2_rr.:...);-;;x:C:(4:-.'-'95-"-)) 
10.0 2rr I 0.0 I 0.0 

= o.o1o + o.o10 = 1 o.o2o I 

(b) P(l 5 2 5) = - - - sm - sm -9 0 0.10 I ( . (2rr) x (2.05) . .:::<2::..:".:...) ;-;;x,..;(:.c.l.c:..:95"-)) 
· ' · 10.0 2rr 10.0 10.0 

= o.o 10 - o.oo3I = I o.oo1l 

(c) P( . , I . ) = -- - - sm - sm -'-----'-c::cc::------'-990 00 
0.10 I(· (2rr)x(l0.0) . (2rr)x(9.90)) 
10.0 2rr 10.0 10.0 

= 0.010-0.009993 = 17 X Io-6 1 

(d) ?(5.0, 10.0) = ~ [by symmetry] 

(e) ( 
I 2 ) I I ( 4rr 2rr) ~ P -L -L =--- sin--sin- =~ 
3'3 32rr 3 3 

P8.6 The average position (angle) is given by: 

f r'rr eim¢ e-im¢ I r'rr I <P'I'rr 
(</>) = 1/1'</>1/Jdr = }

0 
(2rr)l/2¢(2rr) 112 d¢ = 2rr Jo tj>d¢ = 2rr 2 

0 
=@]. 

Note: this result applies to all values of the quantum number m, for it drops out of the calculation. 

P8.8 The expectation value of the commutator is: 

(lx,fil) = !1/l'[x,i>lif! dr. 

First evaluate the commutator acting on the wavefunction. The commutator of the position and 

momentum operators is defined as 

[' '] " " 1\ d li d 
x,p = xp- px = x x j dx - T dx x, 
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so the commutator acting on the wavefunction is 

• • h d>jl ll d 
[x,p]>/1 = x x-:- dx --:- dx(x>jl), 

I . I 

where 1/J = (2a) 112e-cLr. 

Evaluating this expression yields 

[X,p]lft = x.li(2a)lf2ae-ax- ~[(2a)lf2e-w: +xa(2a)lf2e-nr], 
I I 

A A tt(2a)lf2e-ux . . 
[x,p]>/1 = . (xa -1-xa) = 11l(2a) 1i 2 e-"', 

I 

which is just iii times the original wavefunction. Putting this result into the expectation value yields: 

([x,jiJ) = 2iah x -- = [;!i] e-2ax I"" 
-2a 0 

Note: Although the commutator is a well defined and useful operator in quantum mechanics, it does not 
correspond to an observable quantity. Thus one need not be concerned about obtaining an imaginary 
expectation value. 

Solutions to theoretical problems 

We look for the value of A at which p is a maximum, using (as appropriate) the short-wavelength 

(high-frequency) approximation 

Srrhe ( I ) 
p = J:5 ehcfAkT - I [8.5] 

dp 5 he ( ehcfAkT ) 
d). = -'i_p + J.2kT ehcfAkT- I p = 0 at A= Ama:-:: 

he e"cf'AkT 
Then -5 +- x c:=~--:-= 0 ' AkT ehcfAkT _ 1 

Hence 5- 5elrcfAkT + ~ehcjAkT = 0 
' !.kT 

If heJAkT » 1 [short wavelengths, high frequencies], this expression simplifies. We neglect the initial 

5, cancel the two exponents, and obtain 

he 
he= 5AkT for A = Am, and i.kT » I 

he C2 
or Ama:-:: T = 5k = 5 , in accord with observation. 

COMMENT. Most experimental studies of black-body radiation have been done over a wavelength range or 

a factor or 10 to 100 of the wavelength of visible light and over a temperature range of 300 K to 1 0 000 K. 
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Question. Does the short-wavelength approximation apply over all of these ranges? Would it apply to 

the cosmic background radiation of the universe at 2.7 K where Amax ::::;::: 0.2 em? 

(a) With a liltle manipulation, a small-wavelength approximation of the Planck distribution can be 
derived that has the same fonn as Wien's formula. First examine the Planck distribution, 

81rhc 
PPhmck = )...5(ehc/HT- I)' 

for small-wavelength behavior. The factor A-S gets large as ).. itself gets small, but the other factor, 
namely lj(e"cfAkT- 1) gets small even faster. Focus on that factor, and try to express it in terms 

of a single decaying exponential (as in Wien's formula), at least in the small-A limit. Multiplying 
it by one in the form of e-lrc/AkT ;e-llc/AkT, yields e-hc/HT /1 - e-lrc/AkT, where e-hc/AkT is small, 

so let us call it £. The factor, then, becomes £ f (1 - £ ), which can be expressed as a power series 

in £ as c(l + £ + · · · ). For sufficiently small wavelengths, then, the Planck distribution may be 

approximated as: 

This has the same form as Wien's formula: 

. _ 0 -b/HT 
PWrcn- ).5 e · 

Comparing the two formulas gives the values of the Wien constants: 

a=IBnhcl and h=~. 

(b) The wavelength at which the Wien distribution is a maximum is found by setting the derivative of 

the distribution function to zero: 

-- - 0 - -e -- - -e - -e - - 5 dpw,;, _ _ a -bjHT ( b ) 5a -bjHT _ a -bjHT ( b ) 
dA. i-5 i-2kT >.6 i-6 AkT " 

b b he 
so 1-kT- 5 = 0 and A.m.,= 5kT = 5kT. 

Putting this in the same form as the Wien displacement law, we get: 

I 
TAmax = 5 Cz, 

he 
wherecz = k' 

as was demonstrated in Problem 8.1 0. 

The Stefan-Boltzmann law gives the energy density as a function of temperature. The energy density is 

related to the distribution function by: 

dE= pdi- so E =fa"' pdA.. 

The energy density implied by the Wien distribution is: 

E = r>O !!_ e -bfAkT dA. 
lo >-5 
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Integration by parts several times yields: 

_ -bf>kT (( b)' ( b )' 6bT
2 6 ') aTk

4
1"" 6aT

4
k

4 

E-e - +3- T+--+T -- =-b4 kA kA kA b4
0 

48rreT4 

E = _:_h'""'3'c'3-

in other words, a constant times T4 , consistent with the Stefan-Boltzmann law. 

In each case form Ntfr; integrate 

f (Nl/1)* (Nl/1) dr 

set the integral equal to I and solve for N. 

= N 2 4 x 2al- 4 x _Q + --0 
( 

6a
4 

24a5) 

ao a6 

( ) 

1/2 

hence N = -
1
- 3 32rra0 

where we have used 

x (2) x (2rr) = 32rralN2 ; 

!n
co n! 

x"e-a.r: dx = --
1 

[Problem 8.13 and inside front cover] 
o all+ 

1/J = Nrsin8cosrpe-rf(2ao) 

f 1/f2 dr = N 2 fn"" r4e-'fao dr In" sin2 e sine de fn'" cos2 t/J d¢ 

=N24'a6j
1 

(l-cos28)dcose x rr 
-I 

= N24!a6 (2- ~3 ) rr = 32rra6NJ; hence N - (-'-) 

112 

- 32rra6 
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where we have used J; cos11 e sine dB = - / 1-
1 

cos11 8 d cos() = J ~ 1 x'1 dx 

and the relations at the end of the solution to Problem 8.13. 

(b) The functions will be orthogonal if the following integral, which uses the unnormalized functions, 

proves to equal zero. 

J ljf,ljf,dr = J l (z- ;J e 2:o JlrsinB cos¢ e':") dr 

= 1! (zr -::) e~ )ctr f sin
2

BdB {" cos¢d¢ 

0 

The integral on the far right equals zero. 

['" Jo cos¢d¢ = sin¢1~" = sin(2rr)- sin(O) = 0-0 = 0 

Consequently, the functions are orthogonal. 

Operate on each function with l; if the function is regenerated multiplied by a constant, it is an 

eigenfunction off and the constant is the eigenvalue. 

(a) f = x3 - kx 

i(x3 
- kx) = -x3 + kx = -f 

Therefore,/ is an eigenfunction with eigenvalue, GJ 
(b) f = coskx 

icoskx = cos(-kx) = coskx =f 

Therefore,/ is an eigenfunction with eigenvalue, [±I] 
(c) f = x2 + 3x- 1 

i(x2 + 3x- 1) = x2
- 3x- 1 .P constant xf 

Therefore,[ is not an eigenfunction of i. 

1/J = (cosx)e1kx + (sinx)e-ih = cteih + c2e-ikx_ The linear momentum operator is Px = 
li d 
i dx [8.26] 

As demonstrated in the text (Example 8.6), e-ikx is an eigenfunction ofPx with eigenvalue +kit; likewise 

e-ikx is an eigenfunction of Px with eigenvalue -kfL Therefore, by the principle of linear superposition 

(Section 8.5(d). Justification 8.4), 

( ) P - 2 - r::::::2:l a -c 1 -~ 

(b) P = c~ =I sin2 
X I 
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2 2 c1 = 0.90 =cos x. so cosx = 0.95 

c~ = 0.10 = sin2 x, so sin x = ±0.32; hence 

I 1/r = 0.95e;h ± 0.32e-;h I 

n d 
Px = T dx [8.26] 

(px) = N 2 J 1/r'PxVr dx; 

= 

Hence, 

fVr'PxVr dx 

f 1/f'l/fdx 

dljr = ikljr 
dx 

li . 

H 1/J'(~) dx 

f 1/r'l/r dx 

.,-xtkfljr'ljrdx 
(p ) - I -I kli I 

X - !Vr'l/r dx -

1jr = coskx, 
dl/f . 
- = -ksmkx 
dx 

!
00 dljr !00 1/r' -dx = -k cos kx sin kx dx = 0 

-00 dx -00 

Therefore, (px) = @] 

!
00 dljr ! 00 ' 2 ljr' -dx = -2a xe--<u d.x = 0 [by symmetry, since xis an odd function] 

-oo dx -co 

Therefore, (px) = @] 

1/r = (-!-) 1/2 e-;/ao 
rra3 

0 

[Example 8.4] 

(V) = J 1fr'V1frdr [v =-~.Section 10.1] 
4rrcor 

f ( -e
2 I) I ( -e

2 
) 100 , (V) = 1/r' -- · - ljrdr = - 3 -- re--'/"0 dr x 4rr 

4JT eo r 1ra0 4rr co o 

-- -- X - X 4JT - --I ( -e
2 

) ao 2 -e
2 

- :rra6 4JTeo ( 2) - 4rrcoao 
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(b) For three-dimensional systems such as the hydrogen atom the kinetic energy operator is 

- nz " 
T = --v- [Table 8.!,111, ""J1. for the hydrogen atom] 

2me 

v' = a', + ~ ~ + _I, A 2 = (~) x (£_) r + _.!._A 2 
ar- r ar r- r ar2 r2 

A 21/1 = 0 [>/!has no angular coordinates] 

V'>/J = (-I ) 
112 

x (~) x (_<!,'__) re-'lao 
JTa3 r dr2 

0 

= (-I ) 
112 

x [- (_2_) + _.!._] e-'/"o 
rra3 aor a2 

0 0 

Then,(T) =- (.!!_) x (~) r'rrd</J f'sinBdB r
00

[- (_2_) + (_i,)]e-2'/"or2dr 
2mc rrao lo lo lo aor ao 

= _ (-'!:!!._) roo[- (
2
/') + (r~)]e-2'/"0dr 

meao3 lo ao ao 

_ - -- x -- .\ e dx- -- -_ ( 2n
2 

) ( ao) [1 00 

·" _"' _ n! ] _ 
meao3 4 o a'l+ l 

4rr eoli2 
Inserting ao =--,-[Chapter 10] 

mee-

e2 1 
(T) = -- = --(V) 

8JTeoao 2 

P8.24 (.Q')= J >/J*Q2>/JdT = J >/J*QQ>/JdT = jj (f2>/l)*f2>/ldTr becausef2isanhermitianoperator 

P8.26 

P8.28 

The integrand on the far right is a function times its complex conjugate, which must always be a real, 
positive number. When this type of integrand is integrated over real space, the result is always real, 
positive number. Thus, the expectation value of the square of an hermitian operator is always positive. 

Solutions to applications 

1.44cm K 
Am"= 

57 
[See problems 8.2 and 8.10] 

= = 5.0 x 10- em --1.44cm K 5 ( 10
9 

nm) 
5(5800 K) 102 em 

Amax = lsoo nm, blue-green I [see Figure 10.1 in the text] 

I =a!+ M =a!+ aT' so T = (/(1 -a)) 1/4 = ( (343 W m-') x (I - 0.30)) I/4 

a 5.67 x 10 B W m 2 K 4 

=1255KI 
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where I is the incoming energy flux, a the albedo (fraction of incoming radiation absorbed), M the 
excitance and a the Stefan-Boltzmann constant. (See the solution to Problem 8.11.) Wien 's displacement 

law relates the temperature to the wavelength of the most intense radiation 

TAmax = C2/5, SO 
c2 1.44cmK 

""'"' = 5T = -:5'"'(2::-5::-:5:-:K::-):-

= 1.13 X I0-3cm = Jll.3jLm Jin the infrared. 
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9 
Quantum theory: 
techniques and 
applications 

Answers to discussion questions 

09.2 The correspondence principle states that in the limit of very large quantum numbers quantum mechanics 
merges with classical mechanics. An example is a molecule of a gas in a box. At room temperature, the 

particle-in-a-box quantum numbers corresponding to the average energy of the gas molecules (t kT per 
degree of freedom) are extremely large; consequently the separation between the levels is relatively so 

small (n is always small compared to 112 , compare eqn 9.7 to eqn 9.4a) that the energy of the particle 
is effectively continuous, just as in classical mechanics. We may also look at these equations from the 

point of view of the mass of the particle. As the mass of the particle increases to macroscopic values, the 
separation between the energy levels approaches zero. The quantization disappears as we know it must. 

Tennis balls do not show quantum mechanical effects. (Except those served by Pete Sampras.) We can 

also see the correspondence principle operating when we examine the wave functions for large values of 
the quantum numbers. The probability density becomes uniform over the path of motion, which is again 

the classical result. This aspect is discussed in more detail in Section 9.l(c). 

The harmonic oscillator provides another example of the correspondence principle. The same effects 
mentioned above are observed. We see from Figure 9.26 of the text that probability distributions for 

large values on n approach the classical picture of the motion. (Look at the graph for v = 20.) 

09.4 The physical origin of tunnelling is related to the probability density of the particle, which according to 
the Born interpretation is the square of the wavefunction that represents the particle. This interpretation 

requires that the wavefunction of the system be everywhere continuous, even at barriers. Therefore, if 
the wavefunction is non-zero on one side of a barrier it must be non-zero on the other side of the barrier 

and this implies that the particle has tunnelled through the barrier. The transmission probability depends 

upon the mass of the particle (specifically m 112 , through eqns 9.16 and 9.20): the greater the mass the 
smaller the probability of tunnelling. Electrons and protons have small masses, molecular groups large 

masses; therefore, tunnelling effects are more observable in process involving electrons and protons. 

09.6 Macroscopic synthesis and material development always contains elements of molecular randomness. 

Crystal structures are never perfect. A product of organic synthesis is never absolutely free of impurities, 
although impurities may be at a level that is lower than measurement techniques make possible. Alloys are 

grainy and slightly non-homogeneous within any particular grain. Furthermore, the random distribution 

of atomic/molecular positions and orientations within, and between, macroscopic objects causes the 
conversion of energy to non-useful heat during manufacturing processes. Production efficiencies are 

difficult to improve. Nanometer technology on the I nm to 100 nm scale may resolve many of these 
problems. Self-organization and production processes by nanoparticles and nanomachines may be able 
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to exclude impurities and greatly improve homogeneity by effective examination and selection of each 

atom/molecule during nanosynthesis and nanoproduction processes. Higher efficiencies of energy usage 
may be achievable as nanomachines produce idealized materials at the smaller sizes and pass their 

products to larger nanomachines for production of larger scale materials. 

The directed, non-random, use of atoms and molecules by nanotechniques holds the promise for the 
production of smaller transistors and wires for the electronics and computer industries. Unusual material 

strengths, optical properties, magnetic properties, and catalytic properties may be achievable. Higher 
efficiencies of photo-electronic conversion would be a boon to mankind. There is hope that science will 
devise nanoparticles that destroy pathogens and repair tissues. See Impact 9.1 for discussion of SPM 

examination of atom positions on a macroscopic surface and for the current nanotechnological method 
for positioning atoms on a surface. See Impact 9.2 for discussion of nano-quantum dots that have unusual 

optical and magnetic properties. 

Solutions to exercises 

(6.626 x 10-34 J s)2 - -20 

;;-8 ("'9'"'. 1::;0::;-9-x---:-';10;-'-,.3 i-,1 k'g-:-) ....:x_(:-:1-;.5:;;0'-x--:ciO;;-c9'm-:)o2 = 2· 678 x 1 0 J 

The conversion factors required are 

1 eV = 1.602 x 10- 19 J; I cm- 1 = 1.986 x 10-23 J; 1 eV = 96.485 kJ mol-l 

(a) 

(b) 

h2 
£3-£1 = (9- 1)--, = 8(2.678 x 10-20 J) 

&meL-

=12.14 x I0- 19 JI=I1.34eVI=Il.o8 x 104 cm- 1 1=1129kJmol- 1 1 

h' 
£7-£6 = (49- 36)--, = 13(2.678 X 10-20 J) 

&meL-

=13.48 x I0- 19 JI=I2.17eVI=Il.75 x 104 cm- 1 1=1210kJmol- 1 1 

The probability is 

sm -- dx~ --sm --f . 2 (mrX) 2.D..X . 2 (IZJfX) 
L L L 

where .D..x = 0.02L and the function is evaluated at x = 0.66 L. 

(a) For 11 = 1 
2(0.02L) ~ 

P = L sin2 (0.66rr) = ~ 

(b) For 11 = 2 
2(0.02L) ~ 

P = sin2[2(0.66rr)] = ~ 
L 
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The expectation value is 

(P) = f 1/F' p.p dx 

but first we need pl/f 

d (2) 1
/
2 (mrx) (2) 112

mr (""x) iit = -iii ctx l. sin T = -iii l. T cos T 

• -2i/lJm 1L . (IIJrX) (IIJrX) lnl 
SO ljj) = , Sin -- COS - dx = L2.J 

L· o L L 

" A Jt2n2 
and (p-) = 2m(H) =2m£,= --, 

4L-

for all n. So for n = 2 

•2 _11,2l 
(p) -lm 

The zero-point energy is the ground-state energy, that is, with "x = 11y = 11:; = l: 

02 +"~+n!)~ ~ 
E = x ' 

2 
' [9.12b with equal lengths]= --, 

SmL 8mL-

Set this equal to the rest energy mc2 and solve for L: 

2 3h2 

me = 8mL2 
soL= (~) 1/2 .!:..._ = (~) 1/2 lee 

8 me 8 

where Ac is the Compton wavelength of a particle of mass m. 

(2) 1
/
2 (Srrx) 

1/Fs = L sin L 

2 , (Srrx) P(x) <X 1/F5 <X sin· L 

M . d .. . P( ) d dP(x) 0 ax1ma an mmtma m x correspon to ~ = 

d dlfr 2 (Srrx) (Srrx) ( IOrrx) dx P(x) ex dx ex sin L cos L ex sin -L-

sin61 = 0 when()= O,n,2rr, ... ,n'rr (n' = 0, 1,2, .. . ) 

IOrrx 
' -- =lllr 

L 
for n' ::S 10 

n'L 
SO X=-

10 

[2 sin a cos a = sin 2a] 
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x = 0, x = L are minima. Maxima and minima alternate, so maxima correspond to 

' Ill I3Ll Ill l7il I9Ll 
II = 1,3, 5, 7. 9 X = ll.2J LI.2J llJ ll.2J llQJ 

The energy levels are 

where E 1 combines all constants besides quantum numbers. The minimum value for all the quantum 
numbers is 1, so the lowest energy is 

E1.1.1 = 3E, 

The question asks about an energy 14/3 times this amount, namely 14Et. This energy level can be 
obtained by any combination of allowed quantum numbers such that 

The degeneracy, then, is @]. corresponding to (111, 112, 113) ; (1, 2, 3), (1, 3, 2), (2, I, 3), (2, 3, I), 

(3, I, 2), or (3, 2, 1). 

E = ~kT is the average translational energy of a gaseous molecule (see Chapter 17). 

3 (112 + 112 + n2)h2 n2h2 
E = -kT = I 2 3 

2 8mL2 = 8mL' 

E =G) x (1.381 x w-23 JK- 1) x (300K) = 6.214 x w-21 J 

2 8mL2 
n =--E 

h2 

If L 3 = I.OOm', then L2 = 1.00m2 

---,---'-(6:_:.6.:.:2:_:6:..:x__:.l 0.:.:-_
3
_
4

-;-J '-iS ),--
2 
--- = 1.1 80 X IQ-42 J 

( 
0.02802kgmol-

1 
) x lOOm' 

6.022 x I 023 mol 1 (8) X 

- 21 
2 6.214 x w- J - 2 ~, 

II = 
42 

= 5.265 X 10 , 
1.180 X 10 J 

II =17.26 X 1010 I 

t.E = (211 +I) x (~) = [(2) x (7.26 X 1010) +I] x (~) = 
8mL 8mL 

= (14.52 x 10 10) x (1.180 x w-42 J) = 11.71 x w-31 J I 

14.52 x I0 10h2 

8mL2 
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The de Broglie wavelength is obtained from 

" " A = - = - [8.12] 
p 11/V 

The velocity is obtained from 

l ., 3 - -"l 
EK = 2"'"- = ;kT = 6.214 X 10 - J 

6.214 X JO-ZI J 
"

2 
= _(_1_)--(-,-0-.0-2_8_0_2_k_g_m_o_l_--,--1 -.--) = 2"671 x 

105
m

2 
s-

2
; 

l X 6.022 X J023 mol I 

v=517ms-I 

6.626 x 10_34 1 s 
A= (4.65 X 10 26 kg) X (517 m s I)= 2·75 X 10-II m =1 27 ·5 Pm I 

The conclusion to be drawn from all of these calculations is that the translational motion of the nitrogen 
molecule can be described classically. The energy of the molecule is essentially continuous, 

[:,£ 
£ «<!. 

The zero-point energy is 

I I (k) 1
/
2 I ( 285 Nm- 1 )I/

2 

Eo= -/uv = -It - = -(1.0546 X 10-34 J s) X 26 
2 2 m 2 5.16 x 10 kg 

= 13.92 x 10-21 J I 

The difference in adjacent energy levels is 

( k) 1/2 
6£ = Ev+I - Ev = /iiv [9.26] = /i - [9.25] 

m(!:,£)2 
so k = -'-,.,:

It' 

m 

(2.88 x 10-25 kg) x (3.17 x 10-21 J) 2 I -I I 
(1.0546 x 10 34 Js)2 = 

260
Nm 

E9.1 O(b) The difference in adjacent energy levels, which is equal to the energy of the photon, is 

and 

·(k)l/2 f).£= hw = hv so h -
m 

I/' hc(k) - ("')1/2 A=- - = 2rrc -
li Ill k 

he 

A 

g I ((15.9949u) X (1.66 X 10-27 kgu-I))I/
2 

=2rr(2.998 x 10 ms-) x I 
544Nm 

A = 1.32 X 10-5 m = 113.2 iJ.ffi I 
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E9.11 (b) The difference in adjacent energy levels, which is equal to the energy of the photon, is 

(
k)'i

2 
he 

6.£ = tl(J) = h tJ so li - = 
m A 

1/' hc(k) - (111 )1/2 andA=-- =2rrc-
h l1l k 

Doubling the mass, then, increases the wavelength by a factor of2 112 . So taking the result from Exercise 
9.10(b), the new wavelength is 

;. = 2 112 (13.2 ~m) = 118.7 ~m I 
E9.12(b) !:!,£ = nw = hv 

(a) !:!,£ = hv = (6.626 X w-34 J Hz-') X (33 X 103 Hz) = 12.2 X w-29 J I 

( 
k ) 1/2 

(b) !:!,£ = /W; = li -
llicff [ _I_ = ~+~with 1111 = 1112] 

111cfT 1111 1112 

For a two-particle oscillator merr, replaces m in the expression for w. (See Chapter 13 for a more complete 

discussion of the vibration of a diatomic molecule.) 

(
2k)'i

2 
( (2)x(ll77Nm- 1

) )'12 

!:!,£ = /i - = (1.055 X l0-)4 J S) X 
Ill (16.00) X ( 1.6605 X lO 27 kg) 

= 13.14 x w-20 J I 

E9.13{b) The first excited-state wavefunction has the form 

1{f = 2N,yexp ( -il) 
where Nt is a collection of constants andy= x(mwjll.) 112. To see if it satisfies Schr6dinger's equation, 

we see what happens when we apply the energy operator to this function 

~ 112 d21/t I ') 2 
Hl{f = ----, + -morx 1{f 

2111 dx- 2 

We need derivatives of 1ft 

dl{f dl{f dv ("'w) If' , ( I ') -=-~=- (2N1)x(l-y-)xexp --y-
dt dy dx li 2 

and d
2

~ = d'v (dy)' = ("'w) x (2Nd x ( -3y + y') x exp (- ~Y') = ("'w) x (y' - 3) 1{f 
dt- dy2 dx h 2 h 

~ ~~2 (1/I(JJ) 2 1 2 ') 
So Hl{f = -- x -. x (y - 3)1/f + -mw x-l{f 

2m h 2 
I 2 I 2 3 

= - 2/iw x (y - 3) x 1{f + 21wy 1/f = 2nwl{f 
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Thus, 1/J is a solution of the SchrOdinger equation with energy eigenvalue 

E=l~/lu>l 

E9.14{b) The harmonic oscillator wavefunctions have the form 

( 
I (li') 1

/
4 

,p,,(x) = N,H,.(y) exp --l) with y =:: and ct = ___::_ [9.28] 
2 a mk 

The exponential function approaches zero only as x approaches ±oo, so the nodes of the wavefunction 

are the nodes of the Hermite polynomials. 

H5(y) = 32y'- 160/ + 120y = 0 [Table 9.1] = 8y(4J"- 20i + 15) 

So one solution is y = 0, which leads to x = 0. The other factor can be made into a quadratic equation 

by letting z = y2 

4z2 -20z+ 15 =0 

-b ± J b2 - 4ac 20 ± J202 - 4 x 4 x 15 5 ± ,/TO 
so z = = = 

2a 2x4 2 

Evaluating the result numerically yields z = 0.92 or 4.08, so y = ±0.96 or ±2.02. Therefore 
x =I 0, ±0.96ct, or ± 2.02a I-

COMMENT. Numerical values could also be obtained graphically by plotting Hs(y). 

E9.15(b) The zero-point energy is 

I I ( k ) l/
2 

Eo= -liw = -!i -
2 2 lllcff 

For a homonuclear diatomic molecule, the effective mass is half the mass of an atom, so 

Eo = - ( 1.0546 x 10-34 J s) x I ( 2293.8 N m-
1 

) 
112 

2 1(14.0031 u) x (1.66054 x I0-27 kgu-l) 

Eo= j2.3421 x 10-20 J j 

E9.16(b) Orthogonality requires that 

ifm"f=ll. 

Performing the integration 
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If m =j:. n, then 

,f,* ,,, dr = ei(n-m)¢ f N' I'" 'Ym'YII .( 111-m) 0 

N' 
,..,-----,-(I - I)= 0 
i(n - m) 

Therefore, they are orthogonaL 

E9.17(b) The magnitude of angular momentum is 

(P) 112 = {I (I+ I)J 112n [9.54al = [2(3) 1 112 (1.0546 x w-34 J s) = 12.58 x w-34 1 s I 

Possible projections onto an arbitrary axis are 

(t,) = m,h [9.54b] 

where mt = 0 or ±I or ±2. So possible projections include 

I o. ± 1.0546 X w-34 J s and ±2.1 109 X w-34 J s I 

E9.18(b) The cones are constructed as described in Section 9.7(d) and Figure 9.40(b) of the text; their edges are 
of length {6(6 + I)} 112 = 6.48 and their projections are '"i = +6. +5 •... , -6. See Figure 9.1(a). 

The vectors follow, in units of !i. From the highest-pointing to the lowest-pointing vectors (Figure 9.l(b)), 
the values of m1 are 6, 5, 4, 3, 2, I, 0, -I, -2, -3, -4, -5, and -6. 

4 
5 

I 
2 
3 

6 Figure 9,l(a) 

Figure 9.1(b) 
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Solutions to problems 

Solutions to numerical problems 

w = (; )'
12 

[9.25 with IL in place of m] 

2rrc 
Also, w = 2rrv = T = 2rrcii 

4rr2c2 ii2mlm2 
Therefore k = w2 J.L = 4JT 2c2jj2p. = .c.:c.....::.._.c..:...:.: 

m1 +mz 
We draw up the following table using information from the Data Section, p. 991. 

1H35c1 1H81 Br 1 H 1271 12C16o 14NI60 

v;m-1 299000 265000 231000 217000 190400 

I027m,jkg 1.6735 1.6735 1.6735 19.926 23.253 

I027mz/kg 58.066 134.36 210.72 26.560 26.560 
k/(Nm- 1) 516 412 314 1902 1595 

Therefore, the order of stiffness, is I HI < HBr < HCl < NO < CO 1. 

E = I (I+ l)li' [9.53] = I (I+ l)li' [I = m,rrR2 , m,rr in place of m] 
21 2m,rrR2 

( 
I (I+ I) x ( 1.055 x w-3

• 1 s)2 
) ( 1 1 ) 

E = ~( 2"')-x--,( l,.c. 67:6"'0'::-5'-'x'-':':1 0,:.=,27"'k;.:g.,.)-x..::..;,(l-;:6::-0 .:..x::.:l"'o""'12'm-)"2 x 1. 008 + 126. 90 

[m~ff = ~~ + n:2J 
Therefore, 

E =I (I+ 1) X (1.31 X 10-22 1) 

The energies may be expressed in terms of equivalent frequencies with 

v = ~ = (1.509 x 1033 r 1 s- 1) E. 
h 

Hence, the energies and equivalent frequencies are 

1022E/1 
v/GHz 

0 

@] 
0 

12.621 
396 

2 

17 861 
1188 

3 

I 15.721 
2376 
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P9.6 Treat the gravitational potential energy as a perturbation in the energy operator: 

H(IJ =mgx. 

The first-order correction to the ground-state energy, E 1, is: 

Eil) = f "':0
1'H(I)"':O) dx = f Gr\in (";) mgx Gt' sin(";) <ir, 

(I)_ 2mg 1L .. z ("X) El --- .\Sin - dx, 
L o L 

£(1) = 2mg (x
2 

_ xL cos ("x) sin ("x) _ 
1 L42rr L L 

L' , rrx )IL 
4rr2 cos- ( L) o, 

£:1) =I ~mgL I 
Not surprisingly, this amounts to the energy perturbation evaluated at the midpoinr of the box. 

Form= mc,£: 1) /L = 4.47 x 10-30 J m- 1. 

Solutions to theoretical problems 

P9.8 The energy of any given molecule is 

li2h2 '} ') ') ') 
E = --

2 
[9.12b with n- = ~~~ + n:;: + n: and equal lengths] 

8mL · · ~ 

(The lowest energy level is nx = ny = nz = I, so n2 = 3; however, what follows applies to any allowed 

energy level.) So the internal energy of a sample of N molecules is 

Nn 2h2 Nn2h2 
U=NE=--=--

8mL2 8mV2/3 

In the last step we used V = L3, because we are interested in how the energy changes with volume. 

Consider an adiabatic change of volume, that is, a change in which no heat enters or leaves the sample. 

In that case, the change in energy is entirely work (First Law with q = 0). Differentiate the expression 

for U: 

(au) dw= -
a v adiabatic 

dV= (a) 

In Chapter 2, we learned that expansion work has the form dw=-PexdV. Can these expressions be 

reconciled, and if so, under what conditions? First, note that the expression that multiplies d V in equation 

(a) refers to the sample, so if it is some sort of pressure, it must be the sample pressure, and not an arbitrary 

external pressure, so if the expressions can be reconciled, it must be for reversible adiabatic expansion 

or compression. The expression that multiplies d V can be expressed as 

Nn2h2 2N 
-,-12=-,-~~ v=51"3 = 3 v E · 

2N 
In fact, the kinetic model of gases (Chapter 21) says that the pressure of a gas is equal to 3 V E where 

E is the average kinetic energy of the gas molecules-completely consistent with interpreting it as the 



P9.10 

QUANTUM THEORY: TECHNIQUES AND APPLICATIONS 171 

average particle-in-a-box energy. To summarize, reversible adiabatic work for a gas of particle-in-a-box 

molecules is dw = -pdV, where the pressure is 

Nn2h2 2 N 
p = 12mL5 = 3 VE 

In expansion, the volume increases, meaning that the box gets bigger. Equation 9.12b tells us that the 
kinetic energy decreases, even as the quantum numbers remain constant. This is also consistent with 
what we know of adiabatic expansion and the kinetic model of gases: the temperature of the sample 
drops on expansion, and temperature is related to the kinetic energy (T2 ex: £). 

In isothermal expansion, energy must enter the system as heat to maintain the temperature. We can 
interpret this influx of heat as an increase in quantum numbers (an excitation of the molecules) thal 

offsets the falling energy levels. 

v 
v, 

v, 

v, 
0 f-----'------1 

'-----~---------'------X 
0 L Figure 9.2a 

(a) The wavefunctions in each region (see Figure 9.2(a)) are (eqns 9.14, 9.16, and 9.17): 

1/Jt(X) =eiktx +Bte-ik2x 

•h(x) = Aze''-' + 82e-k,x 

1/13(x) = A3eik3x 

With the above choice of At = 1 the transmission probability is simply T = IA31 2. The wavefunction 
coefficients are determined by the criteria that both the wavefunctions and their first derivatives with 

respect to x be continuous at potential boundaries 

Vlt (0) = >/lz(O); >/12(L) = >/IJ(L) 

doflt (0) d>/12(0) doflz(L) dof!,(L) 
= = 

dx dx dx dx 

These criteria establish the algebraic relationships: 

I + 81 - A2 - 82 = 0 

( -ik1 - kzlA2 + ( -ik1 + kzl82 + Zik1 = 0 

AzeklL + Bze-k2L - A3eikJL = 0 

Azk2ek2L - B2k2e -k2L - iA3k3eik3L = 0 
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Solving the simultaneous equations for A3 gives 

4k k eikJL 
A - I 2 

3 - (ia +b) ekzL - (ia -b) e kzL 

where a= ki- k1k3 and b = k1k2 + kzk3. 

Since sinh(z) = (e'- e-')/2 ore' = 2 sinh(z) +e-', substitute e''L = 2 sinh(k2L) + e-k,L giving: 

4k2k2 
T=IA,I 2 =A xA'= 1 2 

3 3 (a2 + b') sinh2(kzL) + b2 

(b) In the special case for which V1 = V3 = 0, eqns 9.14 and 9.17 require that k1 = kJ. Addi
tionally, 

(~)' - _E_ - -'- where e = EfVz. 
kz - Vz - E - I - e 

a
2 

+b
2 

= (kf +kil2 
= k~ {I + (:; )'} 

2 

b2 = 4kfki 

4e(l-e) 

b' 
T- ----.,-"""....,-,.-:----

- b2 + (a2 + b') sinh2(kzL) - (a'+ b2) 
I + ~ sinh2(kzL) 

{ 
sinh2(k2L)}-I { (e''L-e-''L)2}-I 

T = I + = I + .0..:..,-:;-c::-------c:..._ 
4e(l- e) I6e(l- e) 

This proves eqn 9.20a where V1 = V3 = 0. 

In the high wide barrier limit kzL » I. This implies both that e-kzL is negligibly small compared 
to ekzL and that I is negligibly small compared to e"'L f { 16£(1 -e)}. The previous equation simp
lifies to 

T = 16£(1- e)e-2kzL [9.20b} 
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P9.12 

0.25 

0.2 

0.15 

T 

0.1 

0.05 

0 
I 

;.2 d2>/t I 
The Schrodinger equation is ---2 + -kx2>/t = E>/1 

2m dx 2 

. 2 d>/J " and we wnte 1/f = e-g:r , so - = -2gxe-8· 
dx 

d
2 1/J 2 2 2 2 2 2 - = -2ge-gx + 4g x e-gx = -2g>/t + 4g x 'it 

dx2 

( h:g) Vt - ch:g2) x2>/J + ~kx2>/J = E>/1 

This equation is satisfied if 

;.2g 2 2 I 
E = -;;; and 2h g = 2mk, 

Therefore, 

I (mk)'/2 

or g =- 2 2 n 

E = ~h (':..) 1/2 = ~/uv 
2 m 2 

. (k)l/2 tfw= -
m 

P9.14 (x") =et"(y") =a" j_:"" >/Jy">/Jdx=a"+' j_:"" ¥t2y''dy [x=ay] 

(x3) ex j_:"" >/t 2y3 dy =@] by symmetry [y3 is an odd function of y] 

(x
4

) = a 5 j_:"" 'it l Vt dy 

/'it= J'NH,e-Y'/2 

Figure 9.2(b) 
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y'H,. = .v' (tH,.+J + vH,,_,) = i [t (tH•·+2 + (v + I)H,.) + v (tH,, + (v- l)H,,_2)] 

= i [ iH•·+2 + (v + n H,. + v(v- I)H,,_2] 

=Y[i UH•·+3+(v+2)H,+t) + (v+ n X UH•+I +vH,,_,) 

+ v(v- I) x (tH,,_, + (v- 2)H,,_,) l 
=y(kH,.+J+ ~(v+ I)H,,+J + ~v2 H,._, +v(v-1) x (v-2)H,--J) 

Only yH1.+t and yHI'-1 lead to H1• and contribute to the expectation value (since H1, is orthogonal to all 
except H,.) [Table 9.1]; hence 

J'H,. = ~y[(v + I)H,+t + 2v2H,,_J) + · · · 

= ~ [<v+ ll(1H,.+2+(v+ I)H,)+2v2 (1H,.+(v-I)H,._2)] + 

Therefore 

= il(v + 1)2H1• + v2H~.} + · · · 

= ~(2v2 + 2v + I)H,. + .. 

j +oo j+oo , _2 3 
lfrllfr dy = ~(2v2 + 2v + I)N2 H,;e--' dy = -(2i + 2v +I) 

-oo -co 4a 

and so 

(x4
) = (a5

) x (}"') x (l1•
2 +2v+ I)= ~(2v2 +2v+ l)a4 

L:_ ____ _j 

Jl = J l{r,.•xlfr,, dx = a2 J l{r,.•yl{r,. dy [x = ay] 

(
I ) ->·2(2 yl{r,. = N,, 2H,.+t + vH,_, e · [Table 9.1] 

unless v' = v ± I [Table 9.1] 

Forv'=v+I 

Forv'= v-1 

No other values of v' result in a non-zero value for p.; hence, no other transitions are allowed. 
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To address this time-dependent problem, we need a time-dependent wavefunction, made up from 
solutions of the time-dependent SchrOdinger equation 

• a\IJ (x, t) 
H\IJ(x,t) =in [Table 8.1] 

at 

If lfr(x) is an eigenfunction of the energy operator with energy eigenvalue£, then 

\IJ(x, I)= 1/f(x)e-;E,/h 

is a solution of the time-dependent SchrOdinger equation (provided the energy operator is not itself time 
dependent). To verify this, evaluate both sides of the time-dependent SchrOdinger equation. On the left 

we have 

H\IJ(x, I)= H1/f(x)e-;Et/f> = £1/f(x)e-;E,/h = E\IJ(x, t) 

On the right we have 

a\IJ(x,t) a 'E/1 ' 'E/' jJj = iJj1/f(x)-e-' 1 '= -i-£1/f(x)e-' '" = E\IJ(x,t), 
at at 

the same as on the left. Ourwavepacket is an arbitrary superposition of time-evolving harmonic oscillator 

states, 

\IJ(x,t) = Lc~,lflp(x)e-i£,.tfli 
1'=0 

where ift 11 (x) are time-independent harmonic-oscillator wavefunctions and 

£,, = (v + n /uv [925] 

Hence, the wavepacket is 

\IJ(x,r) = e-iwt/2 Lclltjr,,(x)e-i''wl 

l•=O 

The angular frequency w is related to the period T by T = 2rr jw, so we can evaluate the wavepacket at 
any whole number of periods after 1, that is at a time 1 + nT, where 11 is any integer. (Note: n is not a 

quantum number.) Note that 

so 

1 + nT = 1 + 2rrnfw, 

\IJ(x, I + nT) = e-iM/2e-iwnT/2 L Cvt/tl'(x)e-il'W/ e-iw.mT 

11=0 

-iwt/2 -iJIII ~ , 1, ( ·) -iwvt -2;rim =e e ~c,,'f,,.\e e 
v=O 

Noting that the exponential of (2rr i x any integer) = 1, we note that the last factor inside the sum is I 
for every state. Also, since e-imr = ( -1 )",we have 

\IJ(x,t + nT) = (-1)"\IJ(x,l) 

At any whole number of periods after time I, the wavefunction is either the same at timet or -1 times 
its value at time I. In any event, I \lie returns to its original value each period, so the wavepacket returns 

to the same spatial distribution each period. 
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In each case, if the function is an eigenfunction of the operator, the eigenvalue is also the expectation 

value; if it is not an eigenfunction we form 

(a) 

(b) 

(c) 

(d) 

(Q) = J it'Qit dr [8.34] 

'• /id., .• [±!i] 1-e1
'+' = - -e1

"' = fie1
"'" hence,_ = +fi - id¢ . -

~ Trl. It d ')'.1, ")".!. ~ 1-e--1'+' = --e--•'f' = -2t~.e--•'+'· hence 1- = -2/i 
- id¢ • ' 

(/,)<X ['"cos¢(~..'!.. cos¢) d¢ <X-~ ['"cos¢ sin¢d¢ =@] 
lo 1 d¢ 1 lo 

2 {
2
" .• .• (fj d ) .• .• (IJ = N lo (cos xe'• +sin xe-'•)' i d¢ X (cos xe'• +sin xe-'•) d<J> 

fj 'fn21T '¢ '¢ '¢ '¢ = 7N- (cosxe-• +sinxe•) x (icosxe• -sinxe-• )d</J 
I 0 

['" 
= IW2 Jo (cos2 X - sin2 X +cos x sin x [e2

i¢ - e-Zi¢]) d¢ 

= r!N2 (cos2x- sin2 x) X (2rr) = 2rrliN2 cos2x 

We must evaluate the normalization constant: 

['" 
1 = N1 Jo (cos2 X + sin2 X +cos X sin x [e""' + e-z;q,]) d¢ 

= 2rrN2(cos2x + sin2 x) = 2rrN2 ' 1 soN-=-
2rr 

Therefore 

(1,) =In cos 2x I [X is a parameter] 

,, 
- - J: 

For the kinetic energy we use T = EK = if li2 ct2 
[9.36] = ---

2/ d¢2 
[9.40] 

(a) - . n1 
. n' . lli]' Te'"' = --(i2e'O) = -e'"'· hence (T) = -

21 21' 21 

(b) - ,."' li2 . " ,.. 41i' ,. lzn'l Te- '• = --(21)-e- '• = -e--'•· hence (T) = -
21 21 ' I 

(c) 
- n' li1 l/0l 
T cos¢ = -

21 
(-cos¢) = 

21 
cos¢; hence (T) = LRJ 

(d) 
" . . nz . . liz . . 
T(cos xe•¢ + sin xe-uP) =- - (-cos xeuP- sin xe-uP) =-(cos xeu/J + sin xe-•¢) 

li0l 2/ 21 

and hence (T) = LRJ 
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COMMENT. All of these functions are eigenfunctions of the kinetic energy operator, which is also the total 

energy or Hamiltonian operator, since the potential energy is zero for this system. 

Mathematical software can animate the real part or the imaginary part of 1/J(l/>, 1), or you may wish to 

have it display 111' 2(¢, 1)1. Try a "pure" state, that is, let c = I for one value of m1 and 0 for all others. 
This "packet" does not spread, but only circulates. Also try making all the coefficients in the sum equal 

(all 1, for example). Whatever your choice of coefficients, the pattern will repeat with a period T that 

makes all the time-dependent factors equal to the exponential of (2rr i x an integer): 

4rrl 
T=

li 

making the exponent i£1111 1 J h equal to 2n imf when t = T and at intervals ofT thereafter. (See Problem 

9.18.) An example of this approach using Mathcad is illustrated below: 

Wavepacket on a Ring as a MathCad Document. Let • = 
4 
~ ~ 1. 

1 
and let each function in the superposition 

of m + 1 functions contribute with equal probability. The normalized angular functions are: 

1 

,P(m,</>) := (-1-)~ .ei·m·¢ 
2·1r 

([9.38b] where m is an integer.) 

The normalized superposition is: 

( 
1 )~ mmax 

<l'(mmax.</>, <) := -- · L <l'(m,q,). e-i·m•., 
m + 1 m=O 

2 ·7r. j 
N := 500 j := 0 .. N ¢j := ---;;r- mmax := 8 M := .03 

The probability density of the superposition is: P(t/J, r) := \ll(mmax. ¢, r) · \ll(mmax. ¢, r) 

P($;.0) 

P($;,3-<l.t) 

P($;,6·t.t) 

P($;, 9-t.t) 

s.-----,------,------.------.------. 

4 

2 

" I I 
I I 
I I 
I I 
I I 

: I \ 
: I \ :, ' l I 
I I ,: -..... \ /., ..... , 
I~' ·-" ~-- . 

I f. \ 'J. , __ , \ 
- . ', ·-·-. 

·····~--:-.":". --'· 
0.2 0.4 

Figure 9.3 



P9.24 

P9.26 

178 INSTRUCTOR'S SOLUTIONS MANUAL 

The above plot (Figure 9.3) shows that as the initially localized wave propagates around the ring it 

spreads with time and the uncertainty in knowing particle position increases. The effect of increasing or 
decreasing the energies accessible to the particle may be explored by increasing or decreasing the value 

of mmax in the MathCad document. 

Yj 3 Y33sin8d8d¢=(~) x (
35

) (" sin68sin8d8 (" d¢ [Table9.3] 
· · 64 rr Jo lo 

a' 
-f=-a2f ax2 

= ( 6~) x (~) x (2rr) f_', (1-cos2e) 3 dcose 

[sin8d8 = dcos8, sin28 =I- cos2B] 

= - (I - 3x2 + 3x4 - x6
) dx [x = cos 8] 35 f' 

32 -1 

= 35 (x-x3 +~x'-~x')l' = 35 x 32 =CiJ 
32 5 7 -1 32 35 

a' 
ayzf = -c2f 

andf is an eigenfunction with eigenvalue l-(a2 + b2 + c2) I 

P9.28 Upon making the operator substitutions 

n a 
Px =Tax 

li a 
and Py=-:--

1 ay 

into l;;:. we find 

But 
a ~a ~a aza . . . . ... 

- = -- + -- + - - whtch IS the cham rule of partial dtfferenttatton. a¢ aq, ax aq, ay a¢ az 

ax a . e aq, = aq, (rsm cos¢)= -rsine sin¢= -y 

:; = aaq,(rsin8sin¢)=rsin8cos¢=x 

~=0 
aq, 

Thus. 
a a a - =-y-+xaq, ax ay 

Upon substitution, 

• h a a 
/.=--=-iii
< i aq, aq, 
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P9.30 (a) Suppose that a particle moves classically at the constant speed v. It starts at x = 0 at t = 0 and at 
t = r is at position x = L. v = Lf-c and x = vt. 

l1' l1' (x) = - X dt = - VI dt 
T t=O T 1=0 

=- tctr = -P v 1' v I' 
r t=O 2r 1=0 

vr2 
VT ~ 

=z;=z-=~ 

' I 1' ' v21' ' (x-) = - x- dt = - ,- dt 
T t=O T r=O 

2 

I
' ' ' v 3 (vr)- L-

= -1 =--=-
3r ,~0 3 3 

' 1/' L (x-) - = 3172 

(b) _ (2)
1
/
2 

. (mrx) 1/111 - L sm T for 0 :0 x :0 L [9.4b] 

1L 21L (mrx) (x) 11 = 1/1,~ xl/111 dx = - x sin2 
-- dx 

x=D L o L 

[ 

(
2mrx) 

2 
? xsin --

x- L 

= L 4- 4(mr/L) 

( 2mrx) ]-'~L cos --

8(mr/~)2 x~o 

This agrees with the classical result. 

2 [x' ( x2 1 ) . (2mrx) xcos (~) lx~L 
= L 6- 4(mr/L) - 8(mr/L)3 sm -L- - 8(nrr/L)2 ,-~o 

= ~ [ L: - 8(n:/L)2 J 
L2 I 

= 3 - 4(nrr I L)2 

(
L2 I )1/2 2 1/2 

(x ),. = 3- 4(nrr/L)2 
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This agrees with the classical result in the limit of large quantum numbers: 

· 2 112 L lim (x ), = -
112 11-00 3 

Solutions to applications 

The rate of tunnelling is proportional to the transmission probability, so a ratio of tunnelling rates is 
equal to the corresponding ratio of transmission probabilities (given in eqn 9.20a). The desired factor is 

TtiT2, where the subscripts denote the tunnelling distances in nanometers: 

If 

I+ 
(eKL2 _ e-KL2)2 

T, l6e(l -e) 

Tz 
I+ 

(eKL1 _ e ~<L 1 )2 · 

l6e(l -e) 

(eKL2 _ e-KL2)2 

16e(l- e) » I, 

Tt (eKL2 _ e-KL2)2 
,.._. :::::: e2K(L2-LJ) = e2(7jnm)(2.0-l.O)nm = j1.2 x 1061. 

r 2 "' (e~<LL _ e KLt )2 . . 
then 

This is, the tunnelling rate increases about a million-fold. Note: if the first approximation does not hold, 

we need more information, namely e = EfV. If the first approximation is valid, then the second is also 
likely to be valid, namely that the negative exponential is negligible compared to the positive one. 

Assuming that one can identify the CO peak in the infrared spectrum of the CO-myoglobin complex, 

taking infrared spectra of each of the isotopic variants of CO-myoglobin complexes can show which 
atom binds to the haem group and determine the C==O force constant. Compare isotopic variants to 
12C 160 as the standard; when an isotope changes but the vibrational frequency does not, then the atom 
whose isotope was varied is the atom that binds to the haem. See table below, which includes predictions 

of the wavenumber of all isotopic variants compared to that of ii( 12C 160). (As usual, the better the 

experimental results agree with the whole set of predictions, the more confidence one would have with 
the conclusion.) 

Wavenumber for 

isotopic variant 

v( 12c' 8o) = 
v<'3c'6o) = 

v(l3c'so) = 

IfO binds 

ii( 12c 16o)t 
(12/ 13) 1/2;:;< "c '6o) 
< 121 13)' i2v( 12c '6o) 

t That is, no change compared to the standard. 

If C binds 

(16/ 18) 1i 2 v( 12C 160) 

ii( 12C160)1 

(16/ 18) l/2ii("C 160) 

The wavenumber is related to the force constant as follows: 

w = 21rcii = (~)'!' so k = m(2rrcii) 2
, 

k = m(l.66 X !0-27kg u- 1)[(2rr)(2.998 X 1010 em s- 1)ii( 12c'6o)]2 , 

and k/(kg s- 1) = (5.89 x w-5)(mju)[ii( 12C 160)jcm-'J'. 
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Herem is the mass of the atom that is not bound, i.e. 12 u if 0 is bound and 16 u ifC is bound. (Of course, 

one can compute k from any of the isotopic variants, and take k to be a mean derived from all the relevant 

data.) 

See solution to P2.38, parts (c) and (d). First, let/ = n IN; therefore, f is the fraction of the totally 
stretched chain represented by the end-to-end distance. 

F= _kT ln(N+n) = _ kT ln(N(I +f))=_ kT In(!+/) 
2/ N-n 2/ N(l-f) 2/ 1-f 

kT 
=--[In(!+ f)- In(! - /)) 

2/ 

When n « N, then/« I, and the natura! log can be expanded: In(!+ f)"' f and In(!- f)"' -f. 
Therefore 

kT fkT nkT kT 
F"' --(f- (-/)] = -- = -- = --x. 

2/ I N/ N/2 

In the last step, we note that the distance x between ends is equal to nl, son= xfl. This is a Hooke's 
law force with force constant kT!NP. 

The root mean square displacement is {x2) 112. In part (b) of P9.15, {x2) for a harmonic oscillator was 

evaluated and was found to be 

( I) ( 1t
2 

)

112 
(x2 ) = v + - x --

2 mkrorce 

Therefore, putting in the appropriate values for the ground state (v = 0) of this model 

(x') = ~ X ( n2 X Nf') 1/2 = '!!. X (-~-) 1/2 
2 Nm kT 2 mkT 

(n/) 1/2 ( I ) 1/4 
and (x2

)
112 

= 2 x -;;;a 

P9.38 (a) In the box, the Schr6dinger equation is 

1t
2 

( a' a' a' ) -- -+-+- 1/I=Eo/ 
2m ax2 ay2 az2 

Assume that the solution is a product of three functions of a single variable; that is, let 

1/J(x,y,z) = X(x)Y(y)Z(z). 

Substituting into the Schrtidinger equation gives 

1t
2 

( a'x a'r a'z) -- YZ-+XZ-+XY- =EXrz 2m ax' ay' az2 
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Divide both sides by XYZ: 

For the purposes of illustration, isolate the terms that depend on x on the left side of the equation: 

Note that the left side depends only on one variable, x, while the right side depends on two different 
and independent variables, y and z. The only way that the two sides can be equal to each other for 

all x, y, and z is if they are both equal to a constant. Call that constant £_1., and we have, from the left 
side of the equation: 

h2 a2x 
so----., =ErX-

2m ax- . 

Note that this is just the Schr6dinger equation for a particle in a one-dimensional box. Note also that 
we could just as easily have isolated y terms or z terms, leading to similar equations. 

n' a'Y 
----, = ErY and 

2m ay- . 
h2 a2z 

---- =E-Z 
2m az2 '-

The assumption that the wavefunction can be written as a product of single-variable functions is a 

valid one, for we can find ordinary differential equations for the assumed factors. That is what it 
means for a partial differential equation to be separable. 

(b) Since X, Y, and Z are particle-in-a-box wavefunctions of independent variables x,y, and z respect

ively, each of them has its own quantum number. The three-dimensional wavefunction is a product 
of the three, and therefore depends on all three quantum numbers: 

( 
2 ) 

1
1

2 
. 11,rrx ( 2) Ill . n,.rry ( 2) 

1
1

2 
. 11,rrz 1/J(x,y,z) = X(x)Y(y)Z(z) = - sm -·- x - sm -·- x - sm --

LI L 1 Lz L2 L3 L3 

Each constant of separation (Ex, Ey. and Ez) depends on its own quantum number. The three 

constants of separation add up to the total energy, which therefore depends on all three quantum 

numbers: 

(c) For a cubic box, L1 = L, = L, = L, so 

E _ h2
(n; + n~ + n~) 

- 8mL2 

The energy levels are shown in Figure 9.4. 

(d) Compare this energy-level diagram to Figure 9.2 of the Lextbook. The energy levels here are 

much more closely spaced. In a one-dimensional box, the 15th energy level is not reached until 
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2,3,4 

1,1,5; 3,3,3 
1,3,4 

2,2,4 

2,3,3 
1,2,4 

1,3,3 
I, I ,4 
2,2,3 

1,2,3 

2,2,2 
I, I ,3 

1,2,2 

1,1,2 

1,1,1 

Figure 9.4 

E 
:-o:::--:c;- = 225, and the previous level is 29 units below that. In the three-dimensional box, the 
h2(8mL2 

first 15 energy levels fit within the range of 29 units. The energy levels in a one-dimensional box 
are sparse compared to those in a three-dimensional box. 
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10 Atomic structure and 
atomic spectra 

Answers to discussion questions 

(1) The principal quantum number, n, determines the energy of a hydrogenic atomic orbital through 

eqnlO.ll. 

(2) The azimuthal quantum number, !, determines the magnitude of the angular momentum of 

a hydrogenic atomic orbital through the formula [/(I+ 1)] 112/i. 

(3) The magnetic quantum number, m,, determines the z~component of the angular momentum of 

a hydrogenic orbital through the formula m1h.. 

(4) The spin quantum number, s, determines the magnitude of the spin angular momentum through the 

formula (s(s + I)} '12/i. For hydrogenic atomic orbitals, scan only be 1/2. 

(5) The spin quantum number, m5 , determines the z-component of the spin angular momentum through 
the formula msf'1.. For hydrogenic atomic orbitals, ms can only be± 1/2. 

{a) A boundary surface for a hydrogenic orbital is drawn so as to contain most (say 90%) of the 

probability density of an electron in that orbital. Its shape varies from orbital to orbital because the 
electron density distribution is different for different orbitals. 

(b) The radial distribution function gives the probability that the electron will be found anywhere within 
a shell of radius r around the nucleus. It gives a better picture of where the electron is likely to be 

found with respect to the nucleus than the probability density which is the square ofthe wavefunction. 

The first ionization energies increase markedly from Li to Be, decrease slightly from Be to B, again 

increase markedly from B toN, again decrease slightly from N to 0, and finally increase markedly from 

N to Ne. The general trend is an overall increase of I 1 with atomic number across the period. That is to 
be expected since the principal quantum number (electron shell) of the outer electron remains the same, 

while its attraction to the nucleus increases. The slight decrease from Be to B is a reflection of the outer 
electron being in a higher energy subshell (larger l value) in B than in Be. The slight decrease from N 

to 0 is due to the half-filled subshell effect; half-filled sub-shells have increased stability. 0 has one 

electron outside of the half-filled p subshell and that electron must pair with another resulting in strong 
electron-electron repulsions between them. 

An electron has a magnetic moment and magnetic field due to its orbital angular momentum. It also 
has a magnetic moment and magnetic field due to its spin angular momentum. There is an interaction 

energy between magnetic moments and magnetic fields. That between the spin magnetic moment and the 
magnetic field generated by the orbital motion is called spin-orbit coupling. The energy of interaction is 

proportional to the scalar product of the two vectors representing the spin and orbital angular momenta 
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and hence depends upon the orientation of the two vectors. See Figure I 0.27. The total angular momentum 
of an electron in an atom is the vector sum of the orbital and spin angular momenta as illustrated in 
Figure 10.28 and expressed in eqn I 0.46. The spin-orbit coupling results in a splitting of the energy 

levels associated with atomic terms as shown in Figures 10.29 and 10.30. This splitting shows up in 
atomic spectra as a fine structure as illustrated in Figure 10.30. 

Solutions to exercises 

E10.1(b) The energy of the photon that struck the Xe atom goes into liberating the bound electron and giving it 
any kinetic energy it now possesses 

Epholon = I + £kinetic l = ionization energy 

The energy of a photon is related to its frequency and wavelength 

he 
£photon = hv = T 

and the kinetic energy of an electron is related to its mass and speed, s 

E I 2 
kinetic = 2 mes 

he 1 2 lze1 2 So - =I+ -mes .::::} I = - - -mes 
A 2 A 2 

(6.626x10-34 Js)x(2.998x108ms-1) I( ) 
1 - -

2 
9.11 x 10-3 ' kg 

- 58.4 x 10 9 m 

x (!.79 x J06 ms-')
2 

= 11.94 X 10-IS J I= 12.1 eV 

E10.2(b) The radial wavefunction is [Table 10.1] 

( 
I ') 16 2Zr . . R3,0 = A 6 - 2p + - p e -p where p = -, and A IS a collection of constants. 
9 ao 

[Note: p defined here is 3 x pas defined in Table 10.1] 

Differentiating with respect to p yields 

This is a quadratic equation 

0 = ap2 + bp + e where a= _ _!_ b = ~ and e = -3. 
54' 9' 
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The solution is 

-b ± (b2 - 4ac) 1i 2 r;; 
p = = 15 ± 3v7 

2a 

so r = (~ ± 3 (7'12)) ao 
2 2 z 

Numerically, this works out to p = 7.65 and 2.35, so r = III.5ao/Z I and 13.53ao/Z I· Substituting 

Z =I and ao = 5.292 x 10- 11 m,r = 1607 pm land 1187 pm I· 

The other maximum in the wavefunction is at I r = 0 I. It is a physical maximum, but not a calculus 
maximum: the first derivative of the wavefunction does not vanish there, so it cannot be found by 
differentiation. 

E10.3{b) The complete radial wavefunction, R4,1 is not given in Table 10.1; however in the statement of the 
exercise we are told that it is proportional to 

2Zr 
(20- lOp+ p2 )p where p = - [Note: p defined here is n x p as defined in Table 10.1] 

ao 

The radial nodes occur where the radial wavefunction vanishes, namely where 

(20- lOp+ p2 )p = 0. 

The zeros of this function occur at 

p =0, 

and when 

(20 - lOp+ p2) = 0, with roots p = 2.764, and p = 7.236 

pao pao 2. 764ao I I 
then r = 2z = Z = --

2
- = 1.382ao and 

orr=l7.31 x I0- 11 ml and 11.917x I0- 10 ml 

E1 0.4(b) Normalization requires 

7.236ao I I --
2
- = 3.618a0 

I =N2 fooo e-'/"0 (2-rfao)2r2 dr forr sin8d8 fo
2

rr dcf> 

Integrating over angles yields 

I =4rrN2 loco e-rfa0(2-rfao) 2r 2 dr 

= 4rrN2 fooo e-'/"0 (4- 4rfao + r2 fa6)r 2 dr = 4rrN2 (8al) 
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In the last step, we used 

100 

e-rfkr2 dr = 2k3, loco e-rfkr3 dr = 6k4 , and loco e-rfkr4 dr = 24k5, 

E10.5(b) The average kinetic energy is 

where 1/f = N(2- p)e-PI2 with N = ~ _!___, and 
( 

3 ) 1/2 

4 2rra0 

Zr 
p=-here 

ao 

a3 p2 sin B dp dB d¢ 
dr = r2 sin B dr dB d¢ = 0 

zl 

In spherical polar coordinates, three of the derivatives in V2 are derivatives with respect to angles, so 
those parts of V2 1/J vanish. Thus 

and 

, a
2

1/f 2 al{f a
2

1{f ( ap )
2 

2z (al{f) ap (z )
2 

(a
2

1{f 2 al{f) 
v-l{f = ar2 + -;; 8r = ap2 ar2 + pao ap ar = ao x ap2 + pap 

:~ =N(2-p) x (-1) e-PI2 -Ne-PI2 =NGp-2) e-P/2 

a21/f 
~- =N(lp-2) x (-~) e-P/2 + lNe-PI2 =N(' -lp) e-P/2 
ap2 z _ z 2 4 

V21{f = (!)' Ne-PI2(-4(p + 5/2- p/4) 

(EK) = ['"' rrr r'rr N(2- p)e-PI2 (!._) 2 

X (--"
2

) 
Jo lo Jo ao 2m 

a3 d¢ sin B dB p2 dp 
x Ne-P/2( -4/ p + 5/2- p/4) -'0'----'--=-_:_-'-

zl 

The integrals over angles give a factor of 4rr, so 

- 2 (ao) ( li
2 

) 100 

( 5 I ') (£K)=4rrN - X -- (2-p)X -4+-p--p- pe-Pdp 
Z 2m o 2 4 

The integral in this last expression works out to -2, using loco e-P p11 dp = n! for 11 = I, 2, and 3. So 

(EK) = 4rr (~) x (ao) x (ll2

) = ll2Z
2 

32rra0 Z m Smaij 
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The average potential energy is 

(V) = J 1/J'VljJ dr where 
Ze2 

V=---= 
4neor 

1
00 1" 1'" ( Z

2
e

2 
) a

3 
p

2 
sine dp de dr/J and (V) = N(2- p)e-PI2 N(2- p)e-PI2 0 

3 o o o 4rreoaop Z 

The integrals over angles give a factor of 4rr, so 

(V)=4rrN2 ( z'e
2 )x(a~) {

00

(2-p) 2pe-Pdp 
4rreoao Z Jo 

The integral in this last expression works out to 2, using fooo e-P p11 dp = n! for n = 1, 2, 3, and 4. So 

( 
z' ) ( z2e

2 
) ( a

3
) (V) = 4rr --

3 
X ---- X -% X (2) = 

32na0 4neoao Z 

E1 0.6(b) The radial distribution function is defined as 

P = 4rrr2 1/1 2 so P,, = 4rrr2 (Yo.oR3,o) 2
, 

16rreoao 

?3,, = 4rrr2 (_1_) X (-
1
-) X (~) X (6- 6p + p2

)
2e-P 

4rr 243 <>o 

2Zr 2Zr 
where p = - = - here. 

nao 3ao 

But we want to find the most likely radius, so it would help to simplify the function by expressing it in 

terms either of r or p, but not both. To find the most likely radius, we could set the derivative of P3s 

equal to zero; therefore, we can collect all multiplicative constants together (including the factors of 

aoJZ needed to tum the initial r2 into p2 ) since they will eventually be divided into zero 

P,, = C2 p2(6- 6p + p 2 ) 2 e-P 

Note that not all the extrema of Pare maxima; some are minima. But all the extrema of (P35 )
1I2 

correspond to maxima of P3s· So let us find the extrema of (P3 5 )
1I2 

d(P ) 112 d 3
' = 0 = -Cp(6- 6p + p2)e-PI2 

dp dp 

= C[p(6- 6p + p2 ) x ( -n + (6 _ l2p + 3p2)]e-P/2 

0=C(6-l5p+6p2 - ~p3)e-PI2 so l2-30p+ l2p2 -p3 =0 

Numerical solution of this cubic equation yields 

p = 0.49, 2.79, and 8.72 

corresponding to 

r = "I o::c. 7=-4:-a-o 1"'z=-.---:-4 .-:-19=-a-o...,/ z=.-.-nd:-::t-=-3 .-=o-=-8a-o...,/ z::ll 
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COMMENT. If numerical methods are to be used to locate the roots of the equation which locates the 

extrema, then graphical/numerical methods might as well be used to locate the maxima directly. That is, the 

student may simply have a spreadsheet compute P3s and examine or manipulate the spreadsheet to locate 

the maxima. 

E1 0.7(b) The most probable radius occurs when the radial wavefunction is a maximum. At this point the derivative 
of the function wrt either r or p equals zero. 

(
dR31 ) = o = (d (<4- p) pe-P!')) [Table 10.1] = (4- 4p + P

2
') e-P/2 

dp max dp 
max 

The function is a maximum when the polynomial equals zero. The quadratic equation gives the roots 
p = 4 + 2-/2 = 6.89 and p = 4- 2-/2 = 1.17. Since p = (2Zjnao)r and n = 3, these correspond to 

I
R31 (pi) I IR" (1.17) I r = 10.3 x ao/Z and r = 1.76 x aoJZ. However, = = 4.90. So, we conclude 
R31 (p,) R31 (10.3) 

that the function is a maximum at p = 1.17 which corresponds to I r = 1.76ao/Z.I 

E10.8(b) Orbital angular momentum is 

(i.') 1/2 = /i(/(1 + 1))1/2 

There are I angular nodes and n - I - I radial nodes 

(a) 11 = 4,1 = 2, so (f2) 112 = 6112n = 12.45 x w-34 J s I IT] angular nodes ITJ radial node 

(b) 11 = 2,1 = I, so (f2) 112 = 2 1/ 2/t = 11.49 x 10-34 J s I ITJ angular nodes @]radial nodes 

(c) 11 = 3,1 =I, so (f2) 1i 2 = 2 112 /i = 11.49 X I0-34 Js I IT] angular node ITl radial node 

E1 0.9(b) For/ > 0, j = I ± 1/2, so 

(a) I = I, so j = '"II-:::/2:-o-r ::-:31"'21 

(b) I = 5, so j = 19/2 or 11121 

E1 0.1 O(b) Use the Clebsch-Gordan series in the form 

l=j1 +h. j1 +h -I ....• u1 -hi 

Then, wi1hj1 = 5 andjz = 3 

1 =Is. 7, 6, s. 4, 3, 21 

E10.11(b) The degeneracy g of a hydrogenic atom with principal quantum number 11 is g = n2. The energy E of 
hydrogenic atoms is 
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so the degeneracy is 

(a) 

(b) 

(c) 

heZ2RH 
g=---

E 

he (2)2 RH 
g =- -4heRH 

he (4)2 RH 
g=-

-ihcRH 

he(5)2RH 
g =- -hcRH 

=OJ 
=~ 

=lm 
E10.12(b) The letter F indicates that the total orbital angular momentum quantum number Lis 3; the superscript 3 

is the multiplicity of the term, 2S + 1, related to the spin quantum numberS = I; and the subscript 4 

indicates the total angular momentum quantum number J. 

E1 0.13(b) The radial distribution function varies as 

The maximum value of P occurs at r = ao since 

- ex 2r- - e--rfao = 0 at r = ao dP ( 2r
2

) , 

dr ao 

P falls to a fraction f of its maximum given by 

f= 
(4r2 ja~)e-2r(ao 

(4/ao)e 2 

and hence we must solve for r in 

f l/2 ,. 
_ -rfan --- -e 

e ao 

(a) f = 0.50 

and 
4 _, 

Pmax = -e -
ao 

0.260 = c:;
1 
e-1'/ao solves tor = 2.08ao =It tO pm I and tor = 0.380ao = 120.1 pm I 

(b) f = 0.75 

0.319 = ~~ e-r/tlo solves tor = 1.63ao = 1&6 pm I and tor= 0.555ao = 129.4 pm I 

In each case the equation is solved numerically (or graphically) with readily available personal computer 

soflware. The solutions above are easily checked by substitution into the equation for f. The radial 
distribution function is readily plotted and is shown in Figure I 0.1. 
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v 0.00 
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r/ao Figure 10.1 

E10.14(b) (a) Sd-+ 2s is~ an allowed lransition, for 6.1 = -2 (b./ must equal ±I). 

(b) Sp -+ 3s is I allowed I. since /:!./ = -I. 

(c) Sp -+ 3f is I not I allowed, for 6.1 = +2 (b./ must equal± 1). 

(d) 617 : I = 5; maximum occupancy;::; lz2l 

The only unpaired electrons are those in the 3d subshell. There are three. 

S=[I] and ~-I=!}] 

ForS=~. Ms=]±~and±~] 

forS= !. Ms=]±! j 

E10.16(b) (a) Possible values of S for four electrons in different orbitals are\2, I, and 0 j; the multiplicity is 2S +I, 

so multiplicities are js, 3, and 1 \respectively. 

(b) Possible values of S for five electrons in different orbitals are \512, 3/2 and 112\; the multiplicity is 

2S + I, so multiplicities are\ 6, 4, an_d 2] respectively. 

E10.17(b) The coupling of a p electron (I = I) and ad electron (I = 2) gives rise to L = 3 (F), 2 (D). and I (P) 

terms. Possible values of S include 0 and I. Possible values of 1 (using Russell-Saunders coupling) are 
3, 2, and I (S = 0) and 4, 3, 2, I, and 0 (S = I). The term symbols are 

Hund's rules state that the lowest energy level has maximum mulliplicity. Consideration of spin-orbit 

coupling says the lowest energy level has the lowest value of J(J + I) - L(L + I) - S(S + I). So the 

lowest energy level is I3Fzl. 

E1 0.18(b) (a) 3D has S = I and L = 2, so J = 13. 2, and 1 I are present. J = 3 has [2J states, with M1 = 0, ±I, ±2, 

or ±3; J = 2 has IT] states, with M1 = 0, ±I, or ±2; J = I has 12] states, with M1 = 0, or± I. 
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(b) 4 D has S = 3/2 and L = 2, so J = 17/2, 5/2, 3/2, and 1121 are present. J = 7/2 has [II possible 

states, with M1 = ±7/2,±5/2,±3/2 or ±lj2; J = 5/2 has@] possible states, with M1 = 

±5/2, ±3/2 or± l/2; J = 3/2 has 8] possible states, with M1 = ±3/2 or ±l/2; J = l/2 has [2J 
possible states, with M1 = ±l/2. 

(c) 2G has S= l/2 and L=4, so J =9/2 and 7/2 are present. J =9/2 has [IQJ possible states, with 

M1 = ± 9/2, ±7 /2, ±5/2, ±3/2, or ±lj2; J =7 /2 has~ possible states, with M1 = ± 7/2, 
±5/2, ±3/2, or ±l/2. 

E10.19(b) Closed shells and subshells do not contribute to either Lor Sand thus are ignored in what follows. 

(a) Sc[Ar]3d14s2: S = 1,L = 2; J = ~.~.so the terms are 2Ds12 and 2D3/2· 

(b) Br[Ar]3d 104s2 4p5 . We treat the missing electron in the 4p subshell as equivalent to a single "electron" 

with/= 1, s= !.HenceL= 1, S= 1.andl= ~.~,sothetennsarei 2P3;2and 2 P1/2I· 

Solutions to problems 

Solutions to numerical problems 

P10.2 All lines in the hydrogen spectrum fit the Rydberg formula 

I (I I)[ _ I] - =RH --- IO.l, withv=-
A n2 n2 ). 

I 2 

Find IZJ from the value of Amax. which arises from the transition n1 +I~ 111 

2"1 + I 

n2(n1 + 1)2 
AmoxRH = I = (656.46 X w-9 m) X (109677 X 102 m- 1) = 7.20 

2n1 +I 

and hence n 1 = 2, as determined by trial and error substitution. Therefore, the transitions are given by 

I 1 (I l) u =- = (l09677cm-) x -- 2 , 
A 4 n2 

"' = 3,4,5,6 

The next line has n2 = 7, and occurs at 

u = ~ = (l09677cm- 1
) x (~- ~) = 1397.!3nm I 

A 4 49 

The energy required to ionize the atom is obtained by letting 112 --+ oo. Then 

u= _I_ =(l09677cm- 1) x (~ -o) =274!9cm- 1
, or 13.40eVI 

A00 4 

(The answer, 3.40eV, is the ionization energy of an H atom that is already in an excited state, with 

ll = 2.) 
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COMMENT. The series with n 1 = 2 is the Balmer series. 

P10.4 The lowest possible value of n in Is2nd 1 is 3; thus the series of 2D terms correspond to Is23d, Is24d, 

etc. Figure I 0.2 is a description consistent with the data in the problem statement. 

----,-----'--'-c__ l.i'2p 2P 
E 
c 

0 

10 
Figure 10.2 

If we assume that the energies of the d orbitals are hydrogenic we may write 

heR' 
E(ls2nd1, 2D) = --2 [n = 3,4,5,L] 

n 

Then for the 2D --) 2P transitions 

[ 
he _ _ b.EJ 

b.E = hv = T = hev, v = hc 

from which we can write 

R' 

610.36 X 10 
+-7 em 9 

(a) 

IE(ls22p1, 2P)I l R' l R' 
=-+-= +- (b) 

he A n2 460.29 X lO 7 em 16 

l R' 
+- (c) 

413.23 X 10 7 em 25 

Then 
(b)- (a) solves toR'= l09886cm- 1} 
(a)- (c) solves toR'= l09910cm- 1 

(b) - (c) solves toR' = 109 963 cm- 1 
Mean = l09920cm- 1 

The binding energies are therefore 

R' 
E(ls23d1, 2D) = g =-l22l3cm-1 

2 2 l I I E(ls 2p, P) =-
610

_
36 

x 
10 7 em - 12 213 em- = -28 597cm-

E(ls22s1, 2S) =-
1 

7 
- 28 597 cm- 1 = -43 505 cm-1 

670.78 x 10 em 
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Therefore, the ionization energy is 

P10.6 The ground term is [Ar]4s 1 2S 1;z and the first excited is [Ar]4p1 2P. The latter has two levels with 

J = I + ! = ~ and J = I - ! = ! which are split by spin-orbit coupling (Section I 0.8). Therefore, 

ascribe the transitions to 1 2 P3;2 ~2 S1;21 and 1 2P1;2 ---')-2 S1;21 (since both are allowed). For these values 

of J, the splitting is equal to ~A (Example 10.5). Hence, since 

(766.70 x 10-7 em)- 1 - (770.11 x 10-7 em)- 1 = 57.75em- 1 

we can conclude that A = 138.50 cm- 1 I 

P10.8 The Rydberg constant for positronium (Rps) is given by 

R R I . 
Rps = --

111
- = -- = -R [10.16; also Problem 10.7; m (positron) =me] 

I+-" 1+1 2 

= 54869em- 1 [R= 109737em- 1
] 

Hence 

v = ~ = (54869em- 1) x (~-_I,), 11 = 3, 4, ... 
A 4 11-

= 17621 em- 1 I. l10 288 em- 1 I. l11 522 em- 1 I .... 

The binding energy of Ps is 

E = -hcRps, corresponding to (-)54869cm- 1 

The ionization energy is therefore 54 869 cm- 1, or 16.80 eV 1. 

P10.10 If we assume that the innermost electron is a hydrogen-like ls orbital we may write 

a0 52.92 pm I I r' = z [Examplel0.3] = 
126 

= 0.420 pm 

Solutions to theoretical problems 

P10.12 In each case we need to show that 

1 "'~'hdt = 0 
all space 

(a) Ia"' Ia" fo'" 1/IJ.,l/12.,r
2

drsin8d8d<fJ = 0 

1/11., = R1.oYo.ol Yoo = (...!....) 112 
[Table 9.3] 

t/12s = R2.oYo.o · 4rr 
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Since Yo.o is a constant, the integral over the radial functions determines the orthogonality of the 

functions. 

100 

Rt,oR2.or2 dr 

Rl,O ex e-p/2 = e-Zr/ao [p = 2~· J 

( Zr) [p = 2aZ
0
r] R2,0 ex (2- pj2)e-pf4 = 2- ao e-Zrf2ao 

1oo 100 

( Zr) . R R" ,-2 dr ex e-Zrfao 2 _ _ e-Zrf2ao,-2 dr 1,0. _,0 
o o ao 

2 X 2! ( Z) }I 

= (~ _:._)' - ao x (~_:..) 4 =@] 
2 ao 2 ao 

Hence, the functions are orthogonal. 

(b) We use the Px and P.v orbitals in the form given in Section 10.2(f), eqn l0.24 

Px ex x, P_v ex Y 

Thus 

1 l +oo ~+oo ~+oo 
Px Py dx dy dz ex xy dx dy dz 

all space -oo -oo -oo 

This is an integral of an odd function of x and y over the entire range of variable from -oo 

to +oo, therefore, the I integral is zero I· More explicitly we may perform the integration using 

the orbitals in the form (Section 10.2(1), eqn 10.24) 

Px = f(r) sin 8 cos rp p,. = f(r) sin 8 sin rp 

1 1
00 1" Ia'" p_, Py r 2 dr sin 8 d8 d¢ = /(r)2r2 dr sin2 8 d8 cos¢ sin rp d¢ 

allspace 0 0 0 

The first factor is nonzero since the radial functions are normalized. The second factor is n /2. The third 
factor is zero. Therefore, the product of the integrals is I zero I and the functions are orthogonal. 

We use the Px and Py orbitals in the form (Section 10.2(1)) 

Px = rf(r) sin 8 cos rp Py = rf(r)sin8sin¢ 

1 .• .• 1 .• .• 
and use cos rP = '2 (e~<"' + e-1

"') and sin rjJ = 2i (e1
"' - e-1

"') then 

1 ¢ .• 
Px = 2r/(r)sin8(e' +e-•) 

I .• .• 
p,. = 2irf(r) sin 8(e'• - e-'•) 
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• 1t a 
I, = j a¢ [Problem 9.28 and Section 9.6 and eqn 9.46] 

• 1t .• n .• 
l,px = 2r/(r)sinee' - 2rf(r)sinee-• = ilip,. -F constant xpx 

l,p, = !':r f(r) sine e'¢ + !':r f(r) sine e-i¢ = -ilipx -F constant x p,. 
. 21 21 

Therefore, neither Px nor Py are eigenfunctions ofiz. However,! Px + ipy and Px - ipy I are eigenfunctions 

· /()·ni¢ P.r + IPy = r r smoe Px- ipy = rf(r) sine e-i¢ 

since both ei¢ and e-i¢ are eigenfunctions oflz with eigenvalues +hand -h. 

1/11, = (~) 
112 

e-rfao [10.18] 
rra0 

The probability of the electron being within a sphere of radius r' is 

[" [" f'" lo lo lo 1/li,r' dr sine de d</> 

We set this equal to 0.90 and solve for r'. The integral over(} and l/J gives a factor of 4rr; thus 

fn" r2e->rfao dr is integrated by parts to yield 

ao(r')2e-2r'fao 

2 

Multiplying by 4fab and factoring e-2r' fao 

It is easiest to solve this numerically. It is seen that I r' = 2.66ao I satisfies the above equation. 

Mathematical software has powerful features for handling this type of problem. Plots are very con
venient ro both make and use. Solve blocks can be used as functions. Both features are demonstrated 
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below using Mathcad. 

Let z = r/&0 . The probability, Prob(z), that a 1 s electron is within a sphere ofradius z is: 

I
. 

:1: -:1:-x Prob(z) := 4- x ·e dx 
0 

Variables needed for plot: N := 800 i:c 0 .. N 

08 

0.6 
X·Value 

..,,(.,) Y·Vah.Je 10.90019 

0.4 P Track Data Points 

'·' 

., 

:lmu:·i 
z,:=-

N 

Copy X 

CopyY 

Clooe 

The plot indicates that the probability of finding the electron in a sphere of radius z is sigmoidal. 
The trace feature of Mat head is used to find that with z = 2.66 (r= 2.66 ao) there is a 90.0% 
probability of finding the electron in the sphere. 

Figure 10.3(a) 

The following Mathcad document develops a function for calculating the radius for any desired 
probability. The probability is presented to the function as an argument 

z := 2 Estimate of z needed for computation within following Given/Find solve block for 
the function z(Probability). 

Given 

-z(ProbabiliLy) : .. Find(z) 

'(9) - 2.661 

Ze2 

The attractive Coulomb force= -- · 
4rreo r 2 

(angular momentum)2 (nf"L)2 
The repulsive centrifugal force = -'--"----,.---'-- = --3 [postulated] 

The two forces balance when 

Ze2 
--X 
4rreo 

mer3 mer 

Figure 10.3(b) 
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The total energy is 

(angular momentum)2 

2/ 

Ze2 
---x 

4neo 

I n21i2 Ze2 
E=EK + V = - = --2 - -- [postulated] 

r 2mcr 4n Eor 

= ("2/i2) X 
2mc 

Refer to Problems 10.8 and I 0.18 and their solutions. 

lllelllp 
1-iH = ~me 

mc+mp 
(mp =mass of proton] 

lllelllpos me 
f.lPs = = [mpos = mass of proton = me] 

me+ lllpos 2 

4n li2eo 
ao = r(11 = I)= -

2
-- [10.13 and Problem 10.18] 

e m, 

z2e4mc 

32rr 2e6n2 

To obtain ap,,. the radius of the first Bohr orbit of positronium, we replace me with 11-Ps = me/2; hence, 

The energy of the first Bohr orbit of positronium is 

Thus, I E,_p, = ~E1.H I 
Question. What modifications are required in these relations when the finite mass of the hydrogen 

nucleus is recognized? 

(a) The speed distribution in the molecular beam is related to the speed distribution within the chamber 
by a factor of v cos 8 as shown in Figure 10.4. Since an integration over all possible e must be 

performed, the cos e factor may be absorbed into the constant of proporlionality. 

/bcam(v) = Cvfchambcr(v) where Cis to be determined 

u 

vcosO 
Molecular beam 

Chamber 

Figure 10.4 
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By normalization over the possible beam speeds (0 < vbcam < oo) 

r. _ C ( 2 -(m>'
2/2kT}) Jbcam - v v e 

= Cv3e-(tm•2 f2kT) 

1
00 

/beam dv = 1 
1=0 

=Cleo v3e-(""'
2
/2kTl dv = C I I ,) 

,,~o 2(m/2kT) 

C = 2(m/2kT)2 

I I l (m/2kT)
2 

- c - 2 .;---:=:;;;-,-
- (m/2kT)3 - (m/2kT)3 

4kT 

m 

m , 111 ( 4k T ) r;;;::;:-J 
(£K) = -(v-) =- - =~ 

2 2 Ill 

or 

t:.x = (211-sL
2

) dB 
4£K dz 

dB 4£K C>.x 4(2kT) M 
= = 

dz 211-sLZ 2J1-sL2 

4kT L>.x 
= Ji.sL2 

4(L3807 x I0-23 JK- 1) x (IOOOK) x (LOOx 10-3 m) 

(9,27402 X 10 24 JT 1) X (50 X 10 2 m)2 

~~ =lmTm-'1 

Solutions to applications 

A sLellar surface temperature of 3000-4000 K (a "red star") doesn't have the energetic particles and 

photons that are required for either the collisional or radiation excitation of a neutral hydrogen atom. 

Atomic hydrogen affects neither the absorption nor the emission lines of red stars in the absence of 
excitation. "Blue stars'' have surface temperature of 15 000-20 000 K. Both the kinetic energy and the 

blackbody emissions display energies great enough to completely ionize hydrogen. Lacking an electron, 

the remaining proton cannot affect absorption and emission Jines either. 

In contrast, a star with a surface temperature of 8000-10 000 K has a temperature low enough to avoid 

complete hydrogen ionization but high enough for blackbody radiation to cause electronic transitions of 

atomic hydrogen. Hydrogen spectral lines are intense for these stars. 

Simple kinetic energy and radiation calculations confirm these assertions. For example, a plot of black

body radiation against the radio photon energy and the ionization energy, 1, is shown below. It is clearly 
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seen that at 25 000 K a large fraction of the radiation is able to ionize the hydrogen (hv j 1). It is likely that 

at such high surface temperatures all hydrogen is ionized and, consequently, unable to affect spectra. 

Alternatively, consider the equilibrium between hydrogen atoms and their component charged 

particles: 

The equilibrium constant is: 

P+P- (-t>G") (-t>H"') (-t>S") K= PHPe =exp ~ =exp ~ xexp -R- . 

Clearly !:!~ is positive for ionization, which makes two particles out of one, and ~He., which is close 

to the ionization energy, is also positive. At a sufficiently high temperature, ions will outnumber neutral 
molecules. Using concepts developed in Chapters 16 and 17, one can compute the equilibrium constant; 

it rums out to be 60. Hence, there are relatively few undissociated H atoms in the equilibrium mixture 
that is consistent with the weak spectrum of neutral hydrogen observed. 

The details of the calculation of the equilibrium constant based on the methods of Chapter 17 

follows. Consider the equilibrium between hydrogen atoms and their component charged 

particles: 

The equilibrium constant is: 

P+P- (-t>G") K = --,.- = exp --- . 
PHP RT 

Jump ahead to Section 17.7(b) to use the statistical thermodynamic analysis of a dissociation 

equilibrium: 

e RT 
where q = ~ 

gp A ( 
h' )1/2 

and A= ---
2rrkTm 

and where g is the degeneracy of the species. Note that g+ = 2, g_ = 2, and gH = 4. Consequently, 

these factors cancel in the expression forK. 

RT (2rrkT)
3
1
2 (111-m+)J/2 

-t:. E /RT So K - -- -- --- e ' 0 

- p 9 NA h2 111H 

Note that the Boltzmann, Avogadro, and perfect gas constants are related (R = NAk), and collect powers 
of kT; note also that the product of masses is the reduced mass, which is approximately equal to the 

mass of the electron; note finally that the molar energy b..,Eo divided by R is the same as the atomic 
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ionization energy (2.179 X 10- 18 J from Chapter 10.2(b)) divided by k: 

(kT)5f2(2rrm )3/2 K _ e -E/kT 
- pe-h3 e , 

((1.381 x 10-23 JK- 1) (25000K)j512 (2rr (9.11 x 10-31 Kg))312 
K = >.o... _____ _!._:.._ _ ____c,__-'------'--...,----"'-'--

(105Pa) (6.626 x I0-34Js) 3 

( 
-2.179 X 10-ISJ ) 

x exp (1.381 x 10 23JK 1) (2SOOOK) · 

K =60. 

Thus, the equilibrium favors the ionized species, even though the ionization energy is greater than kT. 

heRH 
E, = --,- whereRH = 109677em- 1 [10.11 with 10.15] 

n-

For n = 100 

( 
I I ) -6 t;.E = Eu+l - E, = -heRH --2 - --2 = 1.97 X 10 heR 

101 100 

v = t;.E = 1.97 x I0-6R =I 0.216em- 1 I 
he 

(r),.l =n2 {I+~+ (1- 1(1; I)) J ~ [10.19] 

2 
nao 2 4 I I (rl10o"' Z = 100 ao = 10 ao = 529nm 

heRH 
I = Eoo -En = -£11 = - 2-

n 

/10o = I0-4heRH so 
1100 

= 10.9677 em-1 
he 

AtT 

kT (1.38 x 10-23 JK- 1
) x (298K) (+) 

-= !Oem =207em- 1 

he (6.63 X 10 34 J s) x (3.00 x· ]QB m s I) 

so the thennal energy is readily available to ionize the staten = 100. Let Vmin be the minimum speed 
required for collisional ionization. Then 

~ tnHV~in = lwo 
2 he he 

. _ [2he (/10o)] ''' 
Vmm- h 

tnH C 

= 
2(6.63x I0-34 Js)x(3.00x 108 ms 1)x(l0.97em 1) 

(1.008 x 10-3 kgmol- 1) x (6.022 x JQ23 mo!- 1)-1 x (-,m ) 
10 em 

I Vmin =511 ms- 1
1 [very slow for an H atom] 
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The radius of a Bohr orbit is a11 :=:::: n2ao; hence the geometric cross-section rra;, :::::::: 114rra5. For 11 = I 

this is 8.8 X w-ll m2 ; for li = 100, it is ls.s X w- 13 m2 1. Thus a neutral H atom in its ground state is 

likely to pass right by the"= 100 Rydberg atom, leaving it undisturbed, since it is largely empty space. 

The radial wavefunction for n = 100 will have 99 radial nodes and an extremely small amplitude above 
rfao ~ 20. For large values of n we expect the radial wavefunction [10.14] to be governed largely by 

the product of pn-l and e-P/2'1 and thus to approach a smoothly decreasing function of distance, as the 
exponential will predominate over the power term. 

Electronic configurations of neutral, fourth period transition atoms in the ground state are summarized in 
the following table along with observed, positive oxidation states. The most common, positive oxidation 
states are indicated with bright boxing. 

Toward the middle of the first transition series (Cr, Mn, and Fe) elements exhibit the widest ranges of 
oxidation states. This phenomenon is related to the availability of both electrons and orbitals favorable 
for bonding. Elements to the left (Sc and Ti) of the series have few electrons and relatively low effective 
nuclear charge leaves d orbitals at high energies that are relatively unsuitable for bonding. To the far 
right (Cu and Zn) effective nuclear charge may be higher but there are few, if any, orbitals available 
for bonding. Consequently, it is more difficult to produce a range of compounds that promote a wide 
range of oxidation states for elements at either end of the series. At the middle and right of the series 
the +2 oxidation state is very commonly observed because normal reactions can provide the requisite 
ionization energies for the removal of 4s electrons. The readily available +2 and +3 oxidation states 
of Mn, Fe, and the + 1 and +2 oxidation states of Cu make these cations useful in electron transfer 
processes occurring chains of specialized protein within biological cells. The special size and charge of 
the Zn2+ cation makes it useful for the function of some enzymes. The tendency of Fe2+ and Cu+ to 
bind oxygen proves very useful in hemoglobin and electron transport (respiratory) chain, respectively. 
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11 Molecular structure 

011.2 

011.4 

011.6 

Answers to discussion questions 

Consider the case of the carbon atom. Mentally we break the process of hybridization into two major 
steps. The first is promotion, in which we imagine that one of the electrons in the 2s orbital of carbon 

(2s22p2 ) is promoted to the empty 2p orbital giving the configuration 2s2p3 . In the second step we 
mathematically mix the four orbitals by way of the specific linear combinations in eqn 11.3 corresponding 

to the sp3 hybrid orbitals. There is a principle of conservation of orbitals that enters here. If we mix four 
unhybridized atomic orbitals we must end up four hybrid orbitals. In the construction of the sp2 hybrids 

we start with the 2s orbital and two of the 2p orbitals, and after mixing we end up with three sp2 hybrid 

orbitals. In the sp case we start with the 2s orbital and one of the 2p orbitals. The justification for all of 
this is in a sense the First Law of thennodynamics. Energy is a state function and therefore its value is 

detennined only by the final state of the system, not by the path taken to achieve that state, and the path 

can even be imaginary. 

It can be proven that if an arbitrary wavefunction is used to calculate the energy of a system, the 

value calculated is never less than the true energy. This is the variation principle. This principle allows 
us an enormous amount of latitude in constructing wavefunctions. We can continue modifying the 

wavefunctions in any arbitrary manner until we find a set that we feel provides an energy close to 

the true minimum in energy. Thus we can construct wavefunctions containing many parameters and 

then minimize the energy with respect to those parameters. These parameters may or may not have 

some chemical or physical significance. Of course, we might strive to construct trial wavefunctions that 
provide some chemical and physical insight and an interpretation that we can perhaps visualize, but that 

is not essential. Examples of the mathematical steps involved are illustrated in Sections 11.5(c) and (d), 

Justification 11.3, and Section 11.6. 

These are all terms originally associated with the Htickel approximation used in the treatment of con

jugated rr-electron molecules, in which the rr-electrons are considered independent of the a-electrons. 

rr-electron binding energy is the sum of the energies of each rr-electron in the molecule. The delocaliz
ation energy is the difference in energy between the conjugated molecule with n double bonds and the 

energy of n ethene molecules, each of which has one double bond. The rr-bond formation energy is the 
energy released when a rr-bond is formed. It is obtained from the totalrr-electron binding energy by 

subtracting the contribution from the Coulomb integrals, ex. 
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In ab initio methods an attempt is made to evaluate all integrals that appear in the secular determin
ant. Approximations are still employed, but these are mainly associated with the construction of the 

wavefunctions involved in the integrals. In semi-empirical methods, many of the integrals are expressed 
in terms of spectroscopic data or physical properties. Semi-empirical methods exist at several levels. At 

some levels, in order to simplify the calculations, many of the integrals are set equal to zero. Density 
functional theory (DFT) is considered an ab i11itio method, but it is different from the Hartree-Fock 
(HF) or self-consistent field (SCF) approach in that DFT focuses on the electron density while HF/SCF 
methods focus on the wavefunction. They are both iterative self consistent methods in that the calcu

lations are repeated until the energy and wavefunctions (HF) or energy and electron density (OFf) are 

unchanged to within some acceptable tolerance. 

Solutions to exercises 

E11. 1(b) Use Figure 11.23 for H2, 11.33 for N,, and 11.31 forO,. 

(a) H2 (3 electrons) : 11"'2"'1 I b =0.5 

(b) N 2 ( 10 electrons) : lta22a*2lrr 43a2 l b=3 

(c) o, (12 electrons) : lta22a*23a 2 lrr42rr*2
1 b=2 

E11.2(b) C!F is isoelectronic with F,, CS with N,. 

(a) CIF(14electrons): li<r22<r'23<r2 Irr 42rr'4 1 b =I 

(b) CS(!Oelectrons): ll<r 22<r'2 1rr4 3<r 2 1 b = 3 

(c) Oz(13electrons): li<r 22<r'23<r2 lrr 42rr'3 1 b = 1.5 

E11.3(b) Decide whether the electron added or removed increases or decreases the bond order. The simplest 

procedure is to decide whether the electron occupies or is removed from a bonding or antibonding 
orbital. We can draw up the following table, which denotes the orbital involved 

N, NO o, c, F, CN 

(a) AB- 2rr' 2rr' Zrr' 3<r 4<r' 3<r 

Change in bond order -1/2 -112 -1/2 +1/2 -1/2 +1/2 
(b) AB+ 3<r 2rr' 2rr' lrr 2rr' 3<r 

Change in bond order -1/2 +112 +1/2 -1/2 +112 -1/2 

(a) Therefore, I C2 and CN I are stabilized (have lower energy) by anion formation. 

(b) I NO, Oz and Fzl are stabilized by cation formation; in each of these cases the bond order increases. 

E11.4(b) Figure 11.1 is based on Figure 11.31 of the text but with Cl orbitals lower than Br orbitals. BrCl is likely 
to have a shorter bond length than BrCI-; it has a bond order of 1, while BrCI- has a bond order of 1/2. 



E11.5(b) 

MOLECULAR STRUCTURE 205 

4p 

Jp 

Figure 11.1 

Oj (II electrons) : 1 a 22a*23cr2 I.n.42rr* 1 b = 5/2 

o, (12 electrons) : I u 22a*23a 2 I1z.42rr*2 b=2 

02 (13 electrons) : Ia 22a*2 3a2 lrr 42n*3 b = 3/2 

oi- (14 electrons) : I a 22a*23a2Irr42rr*4 b=l 

Each electron added to Oi is added to an anti bonding orbital, thus increasing the length. So the sequence 

I ot' 02, o;- I o~-1 has progressively longer bonds. 

E11.6(b) f >jl 2 dr =N2 f (>/JA+I.>/Js)2 dr =I =N
2 f (>/11 +!.2 >/1~+21.>/IA>/JB)dr =I 

= N
2

(1 + !.
2 

+ 2/.S) [/ 1/JA>/JBdt = S J 

Hence N = ( 
1 ) 1/2 

I +2AS+i.2 

E11.7(b) We seek an orbital of the form aA + bB, where a and bare constants, which is orthogonal to the orbital 

N(0.145A + 0.8448). Orthogonality implies 

f (aA + b8)N (0.145A + 0.8448) dr = 0 

N f [0.145aA2 + (0.145b + 0.844a)A8 + 0.844b82] dr = 0 

The integrals of squares of orbitals are 1 and the integral JAB dr is the overlap integralS, so 

0 = (0.145 + 0.844S)a + (0.145S + 0.844)b so a= 
0.145S + 0.844 b 

0.145 + 0.844S 
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This would make the orbitals orthogonal, but not necessarily normalized. 1f S 
simplifies to 

0.844 
a= ---b 

0.145 

and the new orbital would be normalized if a= 0.844N and b = -0.145N. That is 

I N(0.844A- 0.1458) I 

0, the expression 

E11.8(b) The trial function 1/J = x2(L- 2x) does not obey the boundary conditions of a particle in a box, so it is 
I not appropriate 1- In particular, the function does not vanish at x = L. 

E11.9(b) The variational principle says that the minimum energy is obtained by taking the derivative of the trial 
energy with respect to adjustable parameters, setting it equal to zero, and solving for the parameters: 

. _ 3ali2 e2 
( a )1/2 

Etnal - -
2
- - - -

2 3 SO 
fl. eo rr 

Solving for a yields: 

( 
1.u

2 
)' ( I ) so a- -- - -

- 3n2eo 2rr3 -

Substituting this back into the trial energy yields the minimum energy: 

E11.10(b) Energy is conserved, so when the photon is absorbed, its energy is transferred to the electron. Part of 
it overcomes the binding energy (ionization energy) and the remainder is manifest as the now freed 
electron's kinetic energy. 

£photon = f + £kinetic 

he (6.626 X w- 34 Js) X (2.998 X 108 ms- 1) v 
so E,· · -Eh -I-- -I- -469e 

'"""- potoo -A -(584xi0- 12 m)x(l.602xi0- 19 JeV 1) . 

= l2119 ev I= 13.39 x w- 16 J I 
E11.11(b) The molecular orbitals of the fragments and the molecular orbitals that they form are shown in Figure 11.2. 

E11.12(b) We use the molecular orbital energy level diagram in Figure 11.41. As usual, we fill the orbitals starting 
with the lowest energy orbital, obeying the Pauli principle and Hund's rule. We then write 

(a) C6H6 (7 electrons) : 

E = 2(a + 2/l) + 4(a + /l) + (a - /l) = 17a + 7 ill 
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Figure 11.2 

(b) C6Ht (5 electrons) : 

E = 2(a + 2,8) + 3(a +,B) = 15a + 7 ,B I 

E11.13(b) The secular determinants from Ell.I3(a) can be diagonalized with the assistance of general-purpose 
mathematical software. Alternatively, programs specifically designed for Hi.ickel calculations (such 
as the one at Australia's Northern Territory University, http://www.smps.ntu.edu.au/modules/mod3/ 
interface.html) can be used. In both molecules, 14 rr-electrons fill seven orbitals. 

(a) In anthracene, the energies of the filled orbitals are a+ 2.41421,8, a+ 2.00000,8, a+ 1.4!421,8 
(doubly degenerate), a+ 1.00000,8 (doubly degenerate), and a+ 0.41421,8, so the total energy is 

14a + 19.31368,8 and the rr energy is 119.3!368,8 I· 
(b) For phenanthrene, the energies of the filled orbitals are a + 2.434 76,8, a + 1.950 63,8, a + 

1.51627,8, a+ 1.30580,8, a+ 1.14238,8, a+0.76905,B, a+0.60523,B,sothetotalenergyis 
14a + 19.448 24,8 and the rr energy is 119.448 24,8 I· 

Solutions to problems 

Solutions to numerical problems 

P11.2 Draw up the following table 

Rlao 0 2 3 4 5 6 7 8 9 10 

s 1.000 0.858 0.586 0.349 0.189 0.097 0.047 0.022 0.010 0.005 0.002 

The points are plotted in Figure 11.3. 

P11.4 Quantitatively correct values of the total amplitude require the properly normalized functions 

( 1 )'12 

1/1± = 
20 

± S) (A± B) [I 1.7 and Example II. I] 
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1.0 

""'" 
I I 

S(Is, ls) 

1\ 
0.8 

s 
0.6 

"' 0.4 \ 

0.2 \ 

' --., 
0 

0 2 4 6 8 10 

Figure 11.3 

We first calculate the overlap integral at R = 106 pm = 2ao. (The expression for the overlap integral, S 
is given in Problem 11.2.) 

S = (I+ 2 + ~(2) 2) e-2 = 0.586 

( 
1 ) 1/2 ( 1 ) 112 

Then N+ = 2(1 + S) = 2(1 + 0_586) = 0.561 

( 
1 ) 1/2 ( 1 ) 1/2 _ 

N_ = 2(1 - S) = 2(1- 0.586) = l.099 

( ) 

1/2 

We then calculate with 1/J = ~ e-rAfao, 
Jrao 

andrs both measured from nucleus A, that is 

with z measured from A along the axis toward B. We draw up the following table with R = 106 pm and 
ao = 52.9 pm. 

z/pm -100 -80 -60 -40 -20 0 20 40 

"'+ 0.096 0.14 0.20 0.30 0.44 0.64 0.49 0.42 
(1/rra6)

112 

1/1- 0.14 0.21 0.31 0.45 0.65 0.95 0.54 0.20 
(1Jrra6) 1/2 
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z(pm 60 80 

(1/rra6) 112 
0.42 0.47 

(1frra6) 112 
-0.11 -0.43 

The points are plotted in Figure 11.4. 
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Figure 11.4 

(a) With spatial dimensions in units (multiples) of ao, the atomic orbitals of atom A and atom B may 
be written in the form 

hA 
I [ ' 2 ']'1'/ = ( + R/2)e- x·+y +(z+R/2)- 2 

4(2rr)'l' z 

and 

hB 
I [ ' ' ']'l'j = ( _ R/2)e- x +y-+(z-R/2) 2 

4(2rr) 1/2 z 
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Following eqn II. 7 and Example II.!, we form LCAO-MOs of the form: 

Po.A + P:,B 
{2(1 +SJJ'i2 

= = = 

[anti bonding] and 

whereS =I I I P:.AhB dxdydz {11.17] 

-oo-co-oo 

1ft a, = hA - hB (bonding) 
{2(1 - S)) 1/2 

Computations and plots are readily prepared with mathematical software such as Mathcad. 

Probability densities along internuclear axis (x= y=O) with R= 3. 
(all distances in units of a0) 

0.02 ,--------,-----,---------,--------, 

0.015 

I.PI2 O.Dl 

0.005 

Figure ll.S(a) 

(b) With spatial dimensions in units of ao, the atomic orbitals for the construction of rr molecular 

orbitals are: 

The rr-MOs are: 

1/trr .. = P.<,A + Px.B {bondin ] and 
.. [2(1+S)] 1i 2 g 

= = 00 

where S = I I I Px.APx.B dx dy dz 

-oo-oo-oo 

•1• - Px.A - Px.B [antt.bondt.ng] 
~rr, - {2(1 - S) I t/2 

The plots clearly show the constructive interference that makes a bonding molecular orbital. Nodal 
planes created by destructive interference are clearly seen in the antibonding molecular orbitals. 
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R=3 

AmplilUde of Sigma Ami bonding MO in xz Probability Density of Sigma Antibonding MO 

AmpliiUde of Sigma Bonding MO inxz Probability Density of Sigma Bonding MO 

AmplilUde of Sigma Antibonding MO in .tz 

Figure ll.S(b) 
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R=3 

2p Pi Bonding Amplitude Surface 2p Pi Bonding Probability Density Surface 

2p Pi Amibonding Amplitude Surface 2p Pi Antibonding Probability Density Surface 

Figure ll.S(c) 
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When calculations and plots are produced for the R = 10 case, constructive and destructive 
interference is seen to be much weaker because of the weak atomic orbital overlap. 

P11.8 EH = E, = -hcRH [Seclion l0.2(b)] 

Draw up the following table using the data in question and using 

' ' ' c c ~ c ~ ------x-- x-
4rrcoR- 4rreoao R - 4rreo x (4rreo!i2fmce2) R 

ao ao 
X- =£h X-

R R 

( 
e2 ) 

4rreoR ao 
so lhal -'---::-"--'-

Eh R 

Rfao 0 2 3 4 00 

(e2j4rreoR)/Eh 00 0.500 0.333 0.250 0 

(V, + V2) I Eh 2.000 1.465 0.843 0.529 0.342 0 

(E-EH)/Eh 00 0.212 -0.031 -0.059 -0.038 0 

The poinls are plolled in Figure 11.6. 

0.5 

0.4 

~ 
0.3 

cJ 
I 0.2 
~ 

0.1 

0 

-0.1 Figure 11.6 

The minimum occurs at R = 2.5ao, so R = 130 pm. At that bond length 

E- EH = -0.07Eh = -1.91 eV 

Hence, the dissociation energy is predicted to be about 11.9 eV I and the equilibrium bond length about 

1130pml 
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The electron configuration of F., is ia 22a*23a2 Irr42rr*4 · that of p-is Ia22a*23a2Jrr42Jr*44a* 1 
- gugug• 2 gugugu· 

So F2 has one more anti bonding electron than does Fz, suggesting a lower bond order (1/2 versus I) 
and therefore a weaker bond. By definition a weaker bond has a smaller dissociation energy (hence the 

difference in De)- Weaker bonds tend to be longer (hence the difference in Re) and less stiff (hence 

the difference in V, reflecting a difference in the force constant k) than stronger bonds between similar 
atoms. 

Energy is conserved, so when the photon is absorbed, its energy is transferred to the electron. Part of 

il overcomes the binding energy (ionization energy) and the remainder is manifest as the now freed 
electron's kinetic energy. 

£photon = I + Ekin<.!tic SO I = £photon - £kinetic 

so the first three ionization energies are: 

It = 21.21 eY- 11.01 eY = I10.20eV I 

12 = 21.21 eY- 8.23eY = l12.98eY I 

and /3 = 21.21 eY- 5.22eV = l15.99eY I 

0 

Figure 11.7 

n2h2 

£ 11 = --.,, 11 = 1,2, ... 
8mL- (

2)'1
2 

mrx 
and 'f!, = L sin ( L) [Section 9.1] 

Two electrons occupy each level (by the Pauli principle), and so butadiene (in which there are four 1r 

electrons) has two electrons in -r/11 and two electrons in 1/12 

(2) 1/2 ("X 
'f!t = L sin L) 

These orbitals are sketched in Figure 11.8(a). 
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Figure 11.8(a) 

The minimum excitation energy is 

In CH2=CH--cH=CH-cH=CH-cH=CH2 there are eight rr electrons to accommodate, so the 
HOMO will be o/4 and the LUMO o/s. From the particle-in-a-box solutions 

11 2 9h2 
t>E = £ 5 -£4 = (25- 16)--, = --

2 SmeL- SmcL 

(9) X (6.626 X 10-34 ] s)2 

=-;;;-:-';;;;--~""i"TC-c-;-;-;-;;-'-;-:=~ = 4.3 X 10-IO J 
(8) X (9.109 X 10 31 kg) X (1.12 X 10 9 m)2 

which corresponds to 12.7 eV 1- The HOMO and LUMO are 

_ (2)1/2 . (ll7fX) 
1/J,J- L Sin L 

with 11 = 4, 5 respectively; the two wavefunctions are sketched in Figure I I .8(b). 

Figure 11.8(b) 

COMMENT. It follows that 

he (6.626 x w-34 J s) x (2.998 x 108 m s-1) 
!- = 'E = = 4.6 x w-7 m. or 1460 nm.l 

u 4.3x10 19J · · 

The wavelength 460 nm corresponds to blue light; so the molecule is likely to appear I orange I in white light 
{since blue is subtracted). 
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(a) In the absence of numerical values for a and {3, we express orbital energies as (Ek- a)/{3 for 
the purpose of comparison. Recall that fJ is negative (as is a for that matter), so the orbital 
with the greatest value of (Ek - ct)/ fJ has lhe lowest energy. Draw up the following lable, 
evaluating 

Ek - ct 
2 

2krr 
--- = cos--

{J N 

energy (Ek - ct) I {J 

orbilal, k C6H6 CsHs 

±4 -2.000 
±3 -2.000 -1.414 
±2 -1.000 0 
±I 1.000 1.414 

0 2.000 2.000 

In each case, the lowest and highest energy levels are non-degenerate, while the other energy levels 
are doubly degenerate. The degeneracy is clear for all energy levels except, perhaps, the highest: 
each value of the quantum number k corresponds to a separate MO, and positive and negative values 

of k therefore give rise to a pair of MOs of the same energy. This is not the case for the highest energy 
level, though, because there are only as many MOs as there were AOs input to the calculation, which 
is the same as the number of carbon atoms; having a doubly-degenerate top energy level would yield 
one extra MO. 

(b) The total energy of the rr electron system is the sum of the energies of occupied orbitals weighted 
by the number of electrons that occupy them. In C6H6, each of the first three orbitals is doubly 
occupied, bul the second level (k = ±I) is doubly degenerate, so 

Err = 2Eo + 2 x 2EI = 2(ct + 2{3 cos 0) + 4 ( ct + 2{3 cos 
2
:) = 6ct + 8{3 

The delocalization energy is the difference between this quantity and that of three isolated double 
bonds: 

Edeloo =Err - 6(ct + {J) = 6ct + 8{3 - 6(ct + {J) = ~ 

For linear hexatriene, Edcloc = 0.988,8, so benzene has considerably more delocalization energy 
(assuming that fJ is similar in the two molecules). This extra stabilization is an example of the 
special stability of\ aromatic I compounds. 

(c) In CsHg, each of the first lhree orbitals is doubly occupied, but lhe second level (k = ±I) is doubly 
degenerate. The next level is also doubly degenerate, with a single electron occupying each orbital. 
So the energy is 

Err =2Eo+2 x 2EI +2x IE2 

= 2(ct + 2{3 cos 0) + 4 ( ct + 2{3 cos 
2
:) + 2 ( ct + 2{3 cos 

4
:) 

= 8ct + 9.657 fJ 
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The delocalization energy is the difference between this quantity and that of four isolated double 
bonds: 

Edeloc =Err - 8(a + {J) = 8a + 9.657 fJ - 8(a + {J) = 11.657 fJ I 

This delocalization energy is not much different from that of linear octatetraene ( 1.518{3), so cyclo

ocatetraene does not have much additional stabilization over the linear structure. Once again, though, 

we do see that the delocalization energy stabilizes the JC orbitals of the closed ring conjugated 
system to a greater extent than what is observed in the open chain conjugated system. However, 
the benzenelhexatriene comparison shows a much greater stabilization than does the cyclooctat
etraene/octatetraene system. This is a demonstration of the Hiickel 4n + 2 rule, which states 
that any planar, cyclic, conjugated system exhibits unusual aromatic stabilization if it contains 
4n + 2 rr electrons where "n" is an integer. Benzene with its six rr electrons has this aromatic 
stabilization whereas cyclooctatetraene with eight rr electrons doesn't have this unusual stabiliz

ation. We can say that it is I not aromatic I. consistent with indicators of aromaticity such as the 
HUcke! 4n + 2 rule. 

(a) The table displays computed orbital energies and experimental rr* +-- rr wavenumbers of ethene 
and the first few conjugated linear polyenes. 

Species EwMofeV' EHoMofeV' tlEjeV' Vjcm- 1 

Czl4 1.2282 -10.6411 11.8693 61500 

C4H6 0.2634 -9.4671 9.7305 46080 

C6Hs -0.2494 -8.8993 8.6499 39750 

CsH10 -0.5568 -8.5767 8.0199 32900 

CJOHI2 -0.7556 -8.3755 7.6199 

*Semi-empirical. PMJievel. PC Spanan Pro™ 

(b) A plot of the computed energy difference vs. experimental wavenumbers appears in Figure 11.9. 
The computed points fall on a rather good straight line. Of course a better fit can be obtained to a 
quadratic and a perfect fit to a cubic polynomial; however, the improvement would be slight and the 
justification even more slight. The linear least-squares best fit is: 

I llE/eV = 3.3534 + 1.3791 X w-4 v/cm- 1 I (r2 = 0.994) 

12 

II 

_!!,£ 10 
,y 

9 

8 
30000 

/ 
40000 

/ 
/ 

/ 
50000 

Wcm- 1 

/ 
/ 

60000 

Figure 11.9 
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(c) Invert the fit equation obtained in (b) above: 

6.£/eV- 3.3534 
iJ I em -I = ---c7=-oc---:-::---.---

1.3791 X 10 4 . 

So for CtoHJ2, we expect a transition at: 

;; em-' = 7.6199- 3.3534 = \30937 em-1 \ 
I 1.3791 X 10 4 

(d) The fitting procedure is necessary because the orbital energies are only approximate. Remember 

that an orbital wavefunction is itself an approximation. A semi-empirical computation is a further 
approximation. If the orbitals were exact, then we would expect the energy difference to be directly 

proportional to the spectroscopic wavenumbers with the following proportionality: 

- (6.626 X I0-34 Js)(2998 X I0 10 ems- 1)v 
t>E = hcv = -'-----,.--,=-'--""'--;;,..,.-,-,-,-----'--

1.602 x 10 19 JjeV 

so t>EjeV = 1.240 X 10-4 vjcm-1. 

Clearly this is different than the fit reported above. A further illustration of why the fitting procedure 
is necessary can be discerned by comparing the table from part (a) to a corresponding table based 

on a different computational model, namely Hartree-Fock computalions with an ST0-3G basis 

set: 

Species EwMofeV* EHOMofeV* 6.£/eV* 

c,H4 8.9335 -9.1288 18.0623 

C4H6 6.9667 -7.5167 14.4834 

C6Hs 6.0041 -6.6783 12.6824 

CsH1o 5.4488 -6.1811 11.6299 

C,oH12 5.0975 -5.8621 10.9596 

* A!J initio. STO-JG, PC Spartan Pro™ 
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Obviously these energy differences are not the same as the PM3 differences computed above. Nor 

are they energy differences that correspond to the experimental frequencies. 

COMMENT. The ST0-3G data also fit a straight line. That fit can also be used to estimate the transition in 

C10H12: 

_ _ 1 L>EjeV-3.8311 
vjcm = 2.3045 x 10 4 

so for C10H12 we expect a transition at 

0 em-' = 10.9596-3.8311 = 30933. 
I 2.3045 X 10 4 

Even though the computations differed considerably in detail, with the calibration procedure they result in 

nearly identical predictions. 

(a) The standard enthalpy of formation (6rH" fkJ mol-l) of ethene and the first few linear polyenes is 
listed below. 

Species Computed* Experimentalt 

C2H4 69.580 52.46694 

C4H6 129.834 108.8 ± 0.79 
111.9 ± 0.96 

C6Hs 188.523 168. ± 3 

CsHto 246.848 295.9* 

* Semi-empirical. PM3 level, PC Spartan Pro™ 

t hup:/lwcbbook.nist.gov/chcmistry/ 

%error 

32.6 
19.3 

16.0 
12.2 

16.6 

:t: Pedley. Naylor, and Kirby. Tlwmwdynamic Data of Organic Compounds. 

(b) The% error, shown in the table, is defined by: 

%error= 
6rH"(calc)- 6rH"(expt) 

6rH"(expt) 
X 100%. 

(c) For all of the molecules, the computed enthalpies of formation exceed the experimental values by 

much more than the uncertainty in the experimental value. This observation serves to illustrate that 

molecular modeling software is not a substitute for experimentation when it comes to quantitative 
measures. It is also worth noting, however, that the experimental uncertainty can vary a great deal. 

The NIST database reports ~rH0 for C2H4 to seven significant figures (with no explicit uncertainty). 

Even if the figure is not accurate to l part in 5000 000, it is clearly a very precisely known quantity
as one should expect in such a familiar and well studied substance. The database lists two different 

determinations for .6.rH0 (C4H6). and the experimental values differ by more than the uncertainty 
claimed for each; a critical evaluation of the experimental data is called for. The uncertainty claimed 
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for <'>rHe(C6Hs) is greater still (but still only about 2%). Finally, it should go without saying that 
not all of the figures reported by the molecular modeling software are physically significant. 

Solutions to theoretical problems 

We need to determine whether£_ + E+ > 2EH 

V, - Vz e2 V, + V2 e2 
---:----::" + -- - + -- + 2EH 

I - S 4rreoR l + S 4rreoR 

{(Vt - V2) x (I+ S) +(I-S) x (V, + V2)} 2e2 
.:..:___;______c"------:-:-7-----:-:-c----::'--'--'---=- + -- + 2EH 

(I - S) x (I+ S) 4rreoR 

2(SV2 - Vt) 2e2 
= +--+2EH 

I - S2 4rreoR 

The nuclear repulsion term is always positive, and always tends to raise the mean energy of the orbitals 
above EH. The contribution of the first term is difficult to assess. If S ::::::: 0, SVz :::;:: 0 and V1 :::::: 0, then the 
first term is small compared to the nuclear repulsion term. If S:::::: I and SVz::::::: V,, then once again the 
nuclear repulsion term is dominant. At intermediate values of S, the first term is negative, but of smaller 
magnitude than the nuclear repulsion term. Thus in all cases E_ + E+ > 2EH. 

(a) 1/1 = e-kr 

f I 1"" . 1" 12rr 1f <fr-<frdr = re-21'dr sine de d¢= 2 r o o o k 

f lfl'V2</fdr = f <fr~ dd:2 (re-k')dr = f <fr (k2- 2rk) <frdr 

rc 2rc rc 
=---= 

k k k 

Therefore 

and 

li2k2 ezk 

= 211- - 4rreo 

dE ( li
2

) e
2 

dk = 2 211- k - 4rr eo = 0 when 
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The optimum energy is therefore 

e•fJ-
E = -

2 2 2 
= 1-hcRH I the exact value. 32rr e0 /i 

(b) 1/J = e-k'
2

, Has before. 

f (00 
2 frr r'rr rr ( rr ) 1/2 

1/J'dr= lo e-
2
k' r

2
dr lo sine de lo d</J= 2 2

k 3 

f 1 100 
2 1rr 1& rr "'-1/1 dr = re-2k' dr sine de d<jJ = -

r 0 o o k 

J 1/J'¥21/J dr = -2 J 1f;(3k- 2k2r2)1f; dr 

= _ rr [(3k) x (.!!._)'/2 _ 3k2 (.!!._)'1'1 8 
8 2k' 16 2k5 

Therefore 

dE - =0 when 
dk 

and the optimum energy is therefore 

E= 

Since 8/3n < 1, the energy in (a) is lower than in (b), and so the exponential wavefunction is better than 
the Gaussian. 

Solutions to applications 

(a) a-E f3 f3 
f3 a-E f3 =0 
f3 f3 a-E 

(a -E) I a-E a~EI-{31 f3 f3 I+ {31 f3 a-E 
1=0 f3 f3 a-E f3 f3 
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(a- E) x {(a- E) 2 - !'!21- J'!{J'!(a- E)- !'!21 + !'!{!'!2
- (a- Ell'! I= 0 

(a- E) x {(a- E)2
- !'!21- 2tJ2{a- E- !'!I= 0 

(a- E) x (a- E- J'!) x (a- E + J'!)- 2J'! 2(a- E- J'!) = 0 

(a- E- J'!) X {(a- E) x (a- E + J'!)- 2J'! 21 = 0 

(a- E- J'!) x {(a- E) x (a- E + 2J'!)- J'!(a- E)- 2tJ21 = 0 

(a- E- J'!) x {(a- E) x (a- E + 2J'!)- J'!(a- E + 2J'!)I = 0 

(a - E- J'!) X (a - E + 2J'!) x (a- E- J'!) = 0 

Therefore, the desired roots are E =I a - {3, a - {3, and a+ 2/31- The energy level diagram is shown 
in Figure 11.1 0. 

Energy ---- a-{3 

a+ 2/3 

Figure 11.10 

The binding energies are shown in the following table. 

Species Number of e-

2 
3 
4 

Binding energy 

2(a + 2!'!) = 2a + 4!'! 
2(a + 2!'!) +(a- J'!) = 3a + 3!'! 
2(a + 2!'!) + 2(a - !'!) = 4a + 2!'! 

(b) Hj(g) --> 2H(g) + W(g) 
H+(g) + H,(g) --> Hj(g) 

!1H1 = 849 kJ mol-l 
6.H2 =? 

H,(g) --> 2H(g) t1H3 = {2(217.97)- 0] kJ mol 1 

!1H2 = !1H3- !1H1 = 2[(217.97)- 849]kJmol- 1 

!1H2 = [-413 kJ mol- 1 [ 

This is only slightly less than the binding energy of Hz (435.94 kJ mol- 1) 

(c) 2a +4!'! = -t1H1 = -849kJmol- 1 

-t1H1- 2a 
!'! = where !1H1 = 849 kJ mol- 1 

4 
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Binding energy 

2cx+4(3 = -l>H, =1-849 kJmol- 1 1 

( 
t>H, +2cx) (I t>.H,) I I 3cx + 3(3 = 3 ex-

4 
= 3 2:"'- -

4
- = 3(cx(2) -212kJmol- 1 

t>H, + 2cx l>H, I I 4cx + 2(3 = 4cx-
2 

= 3cx- -
2

- = 3cx- 425 kJ mol- 1 

As a is a negative quantity, all three of these species are expected to be stable. 

(a) The orbitals are sketched in Figure ll.ll(a). lfr1 is a bonding orbital, showing no nodes between 
adjacent atoms, and 1/13 is antibonding with respect to all three atoms. 1/12 is non-bonding, with 
neither constructive nor destructive interaction of the atomic orbitals of adjacent atoms. 

0 c N 

3 

2 r 1 

r 1 
Figure ll.ll(a) 
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(b) This arrangement only works if the entire peptide link is coplanar. Let us call the plane defined by 
the 0, C, and N atoms the xy plane; therefore, the p orbitals used to make the three MOs sketched 

above are Pz orbitals. If the pz. orbital of N is used in the rc system, then the a bonds it makes must be 

in the xy plane. Hence the H atom and the atom labeled Ca2 must also be in the xy plane. Likewise, 
if the Pz orbital of the C atom in the peptide link is used in the rr system, then its a bonds must also 

lie in the xy plane, putting the atom labeled Cal in that plane as well. 

(c) The relative energies of the orbitals and their occupancy are shown in Figure 11.11 a. There are four 

electrons to be distributed. If we look at the conventional representation of the peptide link (10 in the 
text), the two electrons represented by the C=O Ir bond are obviously part of the rr system, leaving 

the two lone pairs on 0, the c-o u bond, and the two other u bonds of cas part of the u system. 
Turning now to the Lewis octet of electrons around the N atom, we must assign two electrons to 

0 c N 

6 

5 r 1 

4 r 1 
Figure ll.ll(b) 
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each of the cr bonds involving N; clearly they cannot be part of the rr system. That leaves the lone 

pair on N, which must occupy the other orbital that N contributes to the molecule, namely the Pz. 
orbital that is part of the rr system. 

(d) The orbitals are sketched in Figure ll.ll(b). 1{14 is a bonding orbital with respect to C and 0, and 

1/16 is antibonding with respect to C and 0. 1/Js is non-bonding, involving only theN atom. There are 
four electrons to be placed in this system, as before, two each in a bonding and non-bonding orbital. 

(e) This system cannot be planar. As before, the atom labeled Cal must be in the xy plane. As before, 

the atoms bound toN must be in a plane perpendicular to the orbital that N contributes to this system, 
which is itself in the xy plane; the bonding partners of N are therefore forced out of the xy plane. 

(0 The bonding MO 1{1, must have a lower energy than the bonding MO 1{14, for o/1 is bonding (sta

bilizing) with respect to all three atoms, while 1/14 is bonding with respect to only two of them. 

Likewise, the antibonding MO 1/13 must have a higher energy than the antibonding MO 1/16, for 1/13 
is antibonding (destabilizing) with respect to all three atoms pairwise, while 1/16 is antibonding only 
with respect to two of them. The nonwbonding MOs 1/12 and 1/Js must have similar energies, not much 

different than the parameter a, for there is no significant constructive or destructive interference 

between adjacent atoms in either one. 

{g) Because bonding orbitall/11 has a lower energy than 1/14. the planar arrangement has a lower energy 
than the non-planar one. The total energy of the planar arrangement is 

£planar= 2£1 + 2£2. 

Compare this to the energy of the non-planar arrangement: 

Enon-planar = 2£4 + 2Es > 2£1 + 2£2 =£planar· 

The fact that £3 > £6 is immaterial, for neither of those orbitals is occupied. 
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12 Molecular symmetry 

Answers to discussion questions 

Symmetry operations Symmetry elements 

I. Identity, E 1. The entire object 

2. n~fold rotation 2. n~fold axis of symmetry, ell 
3. Reflection 3. Mirror plane, cr 

4. Inversion 4. Centre of symmetry, i 
5. 11~fold improper rotation 5. n~fold improper rotation axis, S, 

A molecule may be chiral, and therefore optically active, only if it does not possess an axis of improper 

rotation, S11 • An improper rotation is a rotation followed by a reflection and this combination of operations 
always converts a right-handed object into a left-handed object and vice versa; hence an S,1 axis guarantees 

that a molecule cannot exist in chiral forms. 

See Sections 12.4(a) and (b). 

The direct sum is the decomposition of the direct product. The procedure for the decomposition is the 

set of steps outlined in Section 12.5(a) and demonstrated in //Just ration 12.1. 

Solutions to exercises 

E12.1(b) CCI4 has 14 c, axes I (each C-CI axis), 13 Cz axes I (bisecting CI-c-CI angles), 13S4 axes I (the same 

as the Cz axes), and 16 dihedral mirror planes I (each CI-c-ci plane). 

E12.2(b) Only molecules belonging to Cs, C,11 and C,1v groups may be polar, so 

(a) CH,Cl(C,v) I may be polar I along the e-el bond; 

(b) HWz(CO)to(D4h)lmaynotbepolarl 

(c) SnCI4(Td) I may nol be polar I 
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The factors of the integrand have the following characters under the operations of D6h 

E 2C6 2C, c, 3C2 3C~ 2S, 2S6 ah 3ad 3a, 

Px 2 -I -2 0 0 -2 -I I 2 0 0 
z -I -I -I -I -I -I 

P: I -I -I -I -I -I -I I I 

Integrand 2 -I -2 0 0 -2 -I 2 0 0 

The integrand has the same set of characters as species E1u. so it does not include A1g; therefore the 

integral I vanishes 1. 

We need to evaluate the character sets for the product A,gEzuq. where q = x,y, or z 

E 2C6 2C, c, 3C2 3C~ 2S, 2S6 a, 3ad 3a, 

A,g I I I I I 

E2,, 2 -I -I 2 0 0 -2 -2 0 0 

(x,y) 2 I -I -2 0 0 -2 -I 2 0 0 
Integrand 4 -I -4 0 0 4 -I -4 0 0 

To see whether the totally symmetric species A lg is present, we form the sum over classes of the number 

of operations times the character of the integrand 

c(A 1g) = (4) + 2(-1) + 2(1) + (-4) + 3(0) + 3(0) + (4) 

+ 2(-1) + 2(1) + (-4) + 3(0) + 3(0) = 0 

Since the species A1g is absent, the transition is I forbidden I for k or y-polarized light. A similar 

analysis leads to the conclusion that A1g is absent from the product A,gE2uz; therefore the transition is 

forbidden. 

E12.5(b) The classes of operations for D2 are: £, Cz(x), Cz(y), and Cz(z). How does the function -'YZ behave 
under each kind of operation? E leaves it unchanged. C2(x) leaves x unchanged and takes y to -y 

and z to -z, leaving the product xyz unchanged. C2(y) and C2(z) have similar effects, leaving one 
axis unchanged and taking the other two into their negatives. These observations are summarized as 
follows 

E12.6(b) 

E12.7(b) 

xyz 

A look at the character table shows that this set of characters belong to symmetry species~-

A molecule cannot be chiral if it has an axis of improper rotation. The point group Td has 
j S4 axes j and\ mirror planes(= S1) j, which preclude chirality. The Th group has, in addition, a 

j center of inversion(= S2) j. 

The group multiplication table of group C4v is 
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E c+ 
4 c-4 c, 

E E c+ 
4 c-4 c, 

c+ 
4 

c+ 
4 c, E c-4 

c-4 c-4 E c, c+ 
4 

c, c, c-4 
c+ 

4 E 

a,(x) O"v(X) ad(-xy) ad(xy) a,(y) 

a,(y) a,(y) ad(xy) ad(-xy) a,(x) 

O"d(Xy) ad(xy) a,(x) a,(y) O"d(-xy) 

ad( -xy) ad(-xy) a,(y) a,(x) ad(xy) 

See Figure 12. J. 

c, 
(a) (b) 

c, 

(c) <dl "· I 

(a) Sharpened pencil:£, C00 , uv; therefore I Coov I 

(b) Propellor: E, C3, 3C,; therefore I D3 I 

a,(x) a,(y) ad(xy) ad(-xy) 

a,(x) a,(y) O"d(X)') ad(-xy) 

ad(xy) ad(-xy) a,(y) a,(x) 

ad(-xy) ad(xy) a,(x) a,(y) 

a,(y) a,(x) ad(-xy) ad(xy) 

E c, c-4 
c+ 

4 
c, E c+ 

4 c-4 c+ 
4 c-4 E c, 

c-4 
c+ 

4 c, E 

Figure 12.1 

(c) Square table: E, c4. 4av; therefore I C4v I; Rectangular table:£, c2. 2av; therefore I C2v I 

(d) Person: E, av (approximately); therefore I C, 1-

E12.9(b) We follow the flow chart in the text (Figure 12.7). The symmetry elements found in order as we proceed 

down the chart and the point groups are 

(a) Naphthalene: E, c,, c~. CI. 3a,, i; I D,, I 
(b) Anthracene:£, c2. c;. c~' 3ah. i; I Dzh I 
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(c) Dichlorobenzenes: 

(i) 1,2-dichlorobenzene: E, c2, av, a~; I C2v I 
(ii) 1,3-dichlorobenzene: E, C2, av, a~; I C2v I 

(iii) I ,4-dichlorobenzene: E, c2, c;, C~, 3ah, i; I D2h I· 

(a) H-F Coov 

(b) (c) 

F 
F 

F~F DSh 1: C2,. 
F F 

F F 

(e) !0 r, 

F 

F 
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(d) Dlh 

F 

The following responses refer to the text How chart (Figure 12.7) for assigning point groups. 

(a) HF: linear, no i, so [ Ccov [ 

(b) IF7: nonlinear, fewer than 2C, with n > 2, Cs, sc; perpendicular to Cs, on. so I Dsh I 
(c) Xe02F2: nonlinear, fewer than 2Cn with n > 2, Cz, no c; perpendicular to c2. no O"h, 2crv. so I C2v I 
(d) Fe2(CO)g: nonlinear, fewer than 2C" with fl > 2, C), 3C2 perpendicular to c3. ah. so I D3h l 
(e) cubane (CsHs): nonlinear, more than 2C, with n > 2, i, no Cs, so [ Oh [ 

(f) tetrafluorocubane (23): nonlinear, more than 2C, with n > 2, no i, so] Td [. 

E12.11(b) (a) Only molecules belonging to C,, C,, and C,v groups may be polar. In Exercise 12.9(b) 

I ortho-dichlorobenzene I and I meta-dichlorobenzene I belong to Czv and so may be polar; in Exercise 

12.6(b), I HF and Xe02F2I belong to C,v groups, so they may be polar. 

(b) A molecule cannot be chiral if it has an axis of improper rotation- including disguised or degenerate 

axes such as an inversion centre (S2) or a mirror plane (S J). In Exercises 12.5(b) and 12.6(b ), all the 

molecules have mirror planes, so J none I can be chiral. 

E12.12(b) In order to have nonzero overlap with a combination of orbitals that spans E, an orbital on the central 
atom must itself have some E character, for only E can multiply E to give an overlap integral with a totally 

symmetric part. A glance at the character table shows that I P:c and Py I orbitals available to a bonding N 

atom have the proper symmetry. If d orbitals are available (as in S03), I all d orbitals except dz21 could 

have nonzero overlap. 
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E12.13(b) The product Tr x T(Jl) xI; must contain A, (Example 12.7). Then, since li = B ,, T(Jl) = T(y) = B2 
(Czv character table), we can draw up the following table of characters 

E c, a, a' 
' 

Bz -I -I I 
B, -I I -I 
B,B, -I -I =A2 

Hence, the upper state is j A2j. because Az x Az = A I· 

E12.14(b) (a) Anthracene 

E12.15(b) 

P12.2 

H H H 

:@: o,, 
H H H 

The components of J.L span B3u(x), Bzu{y), and Blu(z:). The totally symmetric ground state is Ag. 

Since Ag x r = r in this group, the accessible upper terms are ~ (x-polarized), I B2u I {y

polarized), and~ (z-polarized). 

(b) Coronene, like benzene, belongs to the D6h group. The integrand of the transition dipole moment 

must be or contain the A1g symmetry species. That integrand for transitions from the ground state is 

A 1gqf. where q is x, y, or z and/ is the symmetry species of the upper state. Since the ground state 

is already totally symmetric, the product qf must also have A1g symmetry for the entire integrand to 

have A1g symmetry. Since the different symmetry species are orthogonal, the only way qfcan have 

A1g symmetry is if q andf have the same symmetry. Such combinations include zAzu.xE1u. and 

yElu· Therefore, we conclude that transitions are allowed to states with I Azu or E1u I symmetry. 

A, 
Az 
E 

sine 

case 

Product 

E 

I 
2 

zc, 

-I 

Linear combinations of 

sine and case 

-I 

0 

-I 
-I 

The product does not contain A1, so I yes I the integral vanishes. 

Solutions to problems 

The operations are illustrated in Figure 12.2. Note that R2 = E for all the operations of the groups, that 

ER = RE = R always, and that RR' = R' R for this group. Since Czah = i, ahi = Cz, and iCz = a11 we 
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can draw up the following group multiplication table 

E c, ao 

E E c, a, 
Cz Cz E 0], 

ao ao E c, 
a, c, E 

0 

oh 

Figure 12.2 

The I trans-CHCl-CHCll molecule belongs to the group Cz0 . 

COMMENT. Note that the multiplication table for C2h can be put into a one-to~one correspondence with the 

multiplication table of 0 2 obtained in Exercise 12.5. We say that they both belong to the same abstract group 

and are isomorphous. 

Question. Can you find another abstract group of order 4 and obtain its multiplication table? There is 

only one other. 

P12.4 Refer to Figure 12.3 of the text. Place orbitals h1 and h2 on the H atoms and s,px.Py. and P: on the 0 

atom. The z-axis is the c2 axis; X lies perpendicular to a;.,y lies perpendicular to Cfv. Then draw up the 
following table of the effect of the operations on the basis 

E c, a,. a;, 

"' "' hz "' "' "' hz "' "' h2 
s s s s s 

Px Px -P.r Px -px 

P.v Py -py -p,. Py 

Pz Pz p, p, p, 

Express the columns headed by each operation R in the form 

(new) = D(R)(original) 

where D(R) is the 6 x 6 representative "of the operation R. We use the rules of matrix multiplication set 
out in Justification 12.1. 
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(i) E: (h1, hz, s, Px. Py, p,) +-- (h" hz, s, Px• py, p,) is reproduced by the 6 x 6 unit matrix 
(ii) Cz : (hz, h,, s, -px, -py, p,) +-- (h1, hz, s, Px• py, p,) is reproduced by 

0 I 0 0 0 0 
I 0 0 0 0 0 

D(C2) = 
0 0 I 0 0 0 
0 0 0 -I 0 0 
0 0 0 0 -I 0 
0 0 0 0 0 

(iii) u,. : (hz, h1, s, Px. -py, pz) +-- (hi, hz, s, Px, Py, p,) is reproduced by 

0 I 0 0 0 0 
I 0 0 0 0 0 
OOIO 00 
OOOI 00 
0 0 0 0 -I 0 
0 0 0 0 0 I 

(iv) u;: (h,, hz, s, -p,, py, pz) +-- (h1, hz, s, Px, Py, p,) is reproduced by 

I 0 0 0 0 0 
0 I 0 0 0 0 

D(u;) = 
0 0 I 0 0 0 
0 0 0 -I 0 0 
0 0 0 0 I 0 
0 0 0 0 0 

(a) To confirm the correct representation of C2av = cr~, we write 

0 0 0 0 0 0 I 0 0 0 0 
I 0 0 0 0 0 I 0 0 0 0 0 

D(C2)D(a,) = 0 0 I 0 0 0 0 0 I 0 0 0 
0 0 0 -I 0 0 0 0 0 I 0 0 
0 0 0 0 -I 0 0 0 0 0 -I 0 
0 0 0 0 0 I 0 0 0 0 0 

I 0 0 0 0 0 
0 0 0 0 0 
0 0 I 0 0 0 

= D(a;) = 0 0 0 -I 0 0 
0 0 0 0 I 0 
0 0 0 0 0 
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(b) Similarly, to confirm the correct representation of ava~ = Cz, we write 

0 l 0 0 0 0 l 0 0 0 0 0 
0 0 0 0 0 0 l 0 0 0 0 

0 0 l 0 0 0 0 0 0 0 0 
0 0 0 l 0 0 0 0 0 -l 0 0 
0 0 0 0 -l 0 0 0 0 0 l 0 
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 
l 0 0 0 0 0 
0 0 l 0 0 0 

= D(Cz) 
0 0 0 -l 0 0 
0 0 0 0 -l 0 
0 0 0 0 0 

(a) The characters of the representatives are the sums of their diagonal elements: 

E 

6 0 

a,, 

2 

a' 
' 

4 

233 

(b) The characters are not those of any one irreducible representation, so the representation is reducible. 

(c) The sum of the characters of the specified sum is 

E c, a, a:, 

3Al 3 3 3 3 

B1 -l l -l 
2Bz 2 -2 -2 2 

3Al +B1 +2Bz 6 0 2 4 

which is the same as the original. Therefore the representation is 3At + B 1 + 2B2. 

P12.6 Representation 1 

and from the character table is either A, or Az. Hence, either D(av) = D(ad) =I+ I or- I I respec
tively. 

Represemation 2 

and from the character table is either B, or Bz. Hence, either D(av) = -D(ad) = [IJ or D(av) = 

-D(ad) = Brespectively. 
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A quick rule for determining the character without first having to set up the matrix representation is 

to count I each time a basis function is left unchanged by the operation, because only these func

tions give a nonzero entry on the diagonal of the matrix representative. In some cases there is a sign 

change, ( ... -f ... ) ~ (. . .f ... ); then -1 occurs on the diagonal, and so count -I. The character 
of the identity is always equal to the dimension of the basis since each function contribmes I lO the 

trace. 

E: all four orbitals are left unchanged; hence x = 4 

C3: One orbital is left unchanged; hence x = I 

C2: No orbitals are left unchanged; hence x = 0 

S4: No orbitals are left unchanged; hence x = 0 

ad: Two orbitals are left unchanged; hence X = 2 

The character set 4, I, 0, 0, 2 spans I A1 + T2l- Inspection of the character table of the group Td shows 

that s spans A 1 and that the three p orbitals on the C atom span T 2- Hence, the I s and p I orbitals of the 

C atom may form molecular orbitals with the four HIs orbitals. In Td, the d orbitals of the central atom 

span E + T2 (character table, final column), and so only the T2 set I (dxy.dy:..d:,x) I may contribute to 

molecular orbital formation with the H orbitals. 

The most distinctive symmetry operation is the I S41 axis through the central atom and aromatic nitrogens 

on both ligands. That axis is also a I C2 I axis. The group is~-

(a) Working through the flow diagram (Figure 12.7) in the text, we note that there are no C11 axes with 

11 > 2 (for the C3 axes present in a tetrahedron are not symmetry axes any longer), but it does have 

c2 axes; in fact it has 2 c2 axes perpendicular to whichever c2 we call principal; it has no O"h, but it 

has 2 O"d. So the point group is I D2d 1-

(b) Within this point group, the distonion belongs to the fully symmetric species~ for its motion is 

unchanged by the s4 operation, either class of c2. or O"d-

(c) The resulting structure is a square bipyramid, but with one pyramid's apex farther from the base 

than the other's. Working through the flow diagram in Figure 12.7, we note that there is only one 

C11 axis with n > 2, namely a C4 axis; it has no C2 axes perpendicular to the C4, and it has no a11, 

but it has 4av. So the point group is I C4v I-

( d) Within this point group, the distortion belongs to the fully symmetric species~- The translation 

of atoms along the given axis is unchanged by any symmetry operation for the motion is contained 

within each of the group's symmetry elements. 

(a) xyz changes sign under the inversion operation (one of the symmetry elements of a cube); hence it 

does not span A1g and its integral I must be zero I 
(b) xyz spans A, in Td [Problem 12.13] and so its integral I need not be zero I 
(c) xyz ---+ -xyz: under z ---+ -z (the O"h operation in D6h), and so its integral I must be zero I 
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We shall adapt the simpler subgroup C6v of the full D6h poim group. The six rr-orbitals span A1 + 81 + 

E1 + E2, and are 

I 
a, = ../6 (rr1 + rr2 + rr3 + rr4 + rrs + 7r6) 

I 
b, = ../6 (rr, - rr2 + rr3 - rr4 + rrs - 7r6) 

I 
--(2Jr)- ]'[')- Jr) + 2JTA -JT'j- lf6) v'i2 - " 
I 2 (Jf2 - rr3 + rrs - 7T6) 

I 
=(2rr, + rr,- rr,- 2rr4- rrs + rr6) 

"12 -
I 2 (rr, + rr3 - rrs - rr6) 

The hamiltonian transforms as At; therefore all integrals of the form J Y,' Hljl dr vanish unless V/ and 
1fr belong to the same symmetry species. It follows that the secular determinant factorizes into four 

determinants 

A1 Ha 1a1 = ~ J (rr, + · · · + 7r6)H(rr, + · · · + 7r6) de= ct + 2/3 

B, H,,., =~J(rr 1 -rr2 +···)H(rr 1 -rr2 +···)dc=ct-2/3 

Hence I ct - 6 - 8 

l

ct+f3-e 
Hence 

0 

0 
ct-f3-e 

0 
ct+/3-e 

I = 0 solves toe =a - fJ (twice) 

I = 0 solves toe = ct + f3 (twice) 

(a) For a photon to induce a spectroscopic transition, the transition moment(/!) must be nonzero. The 
transition moment is the integral f Vr1 f.Ll/li dr, where the dipole moment operator has components 

proportional to the Cartesian coordinates. The integral vanishes unless the integrand, or at least 
some part of it, belongs to the totally symmetric representation of the molecule's point group. We 

can answer the first part of the question without reference to the character table, by considering the 

character of the integrand under inversion. Each component of JL has u character, but each state has g 
character; the integrand is g x g x u:::: u, so the integral vanishes and the I transition is not allowect.l 

(b) However, if a vibration breaks the inversion symmetry, a look at the I character table shows that the 

components of JL have T 1 character. To find the character of the integrand, we multiply together the 

characters of its factors. For the transition to Tt 
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E 12e5 

1 
2(l+v'sl 

T, 3 
1 
2(1 + ,;5) 

Integrand 9 
1 
2(3 + ,;5) 

12e2 
5 

1 
-(l - ,;5) z 
1 
-(l - v'sl 
2 
1 
-(3-v's) z 

zoe, 15ez 

0 -1 

0 -1 

0 

The decomposition of the characters of the integrand into those of the irreducible representations is 
difficult to do by inspection, but when accomplished it is seen to contain A,. Therefore the transition to 

T 1 would become allowed. It is easier to use the fonnula below which is obtained from what is referred 
to as the "little orthogonality theorem" of group theory. (See the Justification in Section 15.5 of the 5th 

edition of this text.) The coefficient of A, in the integrand is given as 

So the integrand contains A 1, and the 1 transition toT 1 would become allowed 1. For the transition to 0 

E 12e5 1Ze2 
5 zoe, 15ez 

A, 

I 1 
JL(T,) 3 2(1 +v'sl -(l - v's) 0 -1 

2 
G 4 -1 -1 0 

I 1 
Integrand IZ --(1+v'5) --(1- v's) 0 0 z 2 

The little orthogonality theorem gives the coefficient of A1 in the integrand as 

So the integrand does not contain A,, and the I transition to G would still be forbidden 1. 

Solutions to applications 

The point group for the square H4 molecule is D4h with h = 16 symmetry species. To find the irreducible 

representations or symmetry species spanned by fours orbitals, we use the methodology of Section 12.5c. 
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Number of unchanged basis 

members 

E 

4 0 

c, 2C~ 

0 2 

2C7_' 2o-, 

0 0 0 4 2 0 

The basis representation is obviously a linear combination of the D411 symmetry species; it is reducible. 

Only the£, zc;. CTh and 2av symmetry elements contribute (The others have factors of zero) to the 
number of times symmetry species r contributes (a( f)) to the representation of the basis. 

E zc; 2o-, 

I 
a(A 1g) = 16{4 · I · I + 2 · 2 · I + 4 ·I· I + 2-2-1) 

I 
a(A,g)= 16{4·1·1 + 2-2-(-1) + 4-1·1 + 2-2·(-1)) 0 

+ 4- I· I + 2 · 2 ·I) = 

I 
a(B,g)= 16{4·1·1 + 2-2-(-1) + 4-1·1 + 2-2-(-1)) = 0 

I 
a(Eg) = 16 {4 · I · 2 + 2 · 2 · 0 

I 
a(A 1") = -{4-1-1 + 2-2-1 

16 

I 

+ 4 · I · ( -2) + 2 · 2 · 0) 

+ 4-1-(-1) + 2-2-(-1)) 

a(A,u)= 16{4-1-l + 2-2-(-1) + 4-1·(-1) + 2-2-1) 

+ 4-1-(-1) + 2-2-(-1)) 

I 

0 

0 

0 

0 

a(B2")= 16{4-I-I + 2-2-(-1) + 4-1·(-1) + 2-2-1) =0 

I 
a(E")=-{4-1-2 + 2-2-0 

16 

The basis spans I Atg + B1g + Eu I· 

+ 4 ·I· 2 + 2. 2 -0) 

Can the Eu excited state be reached by a dipole transition from the A1g ground state? Only if the 
representation of the product lfr[JV.fri includes the totally symmetric species Aig· The z component of 
the dipole operator belongs to symmetry species A2u. and the x andy components belong to Eu. So 
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the products we must consider are EuA2uA1g and EuEuAlg· For z-polarized transitions, the relevant 
characters are: 

E 2C4 c, zc; 2C~ 2S, ah 2 a~ 2 ad 

E, 2 0 -2 0 0 -2 0 2 0 0 
A,, -I -I -I -I -I 
A,g I I I I I 
EuA2uAig 2 0 -2 0 0 2 0 -2 0 0 

To see whether EuA2uAtg contains Alg• we would multiply the characters of the EuA2uA1g by 

the characters of Alg· sum those products, and divide the sum by the order h of the group; since 
the characters of Atg are all I, we can simply sum the characters of EuA2uAig· Since they sum to zero, 

the product EuA2uA1g does not contain A1g. and the I z-polarized transition is not allowed 1-

For x- or y-polarized transitions: 

E 2C, c, 2C2 2C2' 2S, ah 2av 2au 

E, 2 0 -2 0 0 -2 0 2 0 0 
E, 2 0 -2 0 0 -2 0 2 0 0 

A1g I I I 

EuEuAig 4 0 4 0 0 4 0 4 0 0 

Summing the characters of EuEuAJg. yields 16, the order of the group. Therefore the product EuEuAJg 

does contain A1g. and the I transition is allowed 1. 
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Answers to discussion questions 

The gross selection rules tell us which are the allowed speclroscopic transitions. For both microwave and 

infrared spectroscopy, the allowed transitions depend on the existence of an oscillating dipole moment 
which can stir the electromagnetic field into oscillmion (and vice versa for absorption). For microwave 

rotational spectroscopy, this implies that the molecule must have a permanent dipole moment, which 
is equivalent to an oscillating dipole when the molecule is rotating. See Figure 13.17 of the text. In 

the case of infrared vibrational spectroscopy, the physical basis of the gross selection rule is that the 
molecule have a structure that allows for the existence of an oscillating dipole moment when the molecule 

vibrates. Polar molecules necessarily satisfy this requirement, but non-polar molecules may also have a 

fiuctuating dipole moment upon vibration. See Figure 13.28. 

The answer to this question depends precisely on what is meant by equilibrium bond length. See the 
solution to Problem 13.22 where it is demonstrated that the centrifugally distorted bond length rc is 

given by the relation 

l'c = ? . 
I- mcrrw-/k 

The angular velocity depends upon the quantum number J through [he relation 

2 -2 2 .4. w =1(1 + l)h /m0 rrl 0 , 

thus, the distortion is greater for higher rotational energy levels. But the equilibrium bond length rc 
remains constant, if by that term one means the value of r corresponding to a vibrating non-rotating 

molecule with J = 0. However, if one describes the vibration of the molecule in a higher rotational 
state as having a new "equilibrium" distance rc, the potential energy of vibration will also be different. 

It is lowered by the amount shown in eqn 13.33, that is, -D1J2(1 + 1)2 . A detailed analysis of the 
combined effects of rotation and vibration is quite complicated. The tremment in Section 13.12 ignores 

the effects of centrifugal distortion and anharmonicity. See the references under Further Reading for a 

more thorough discussion. 

Solutions to exercises 

E13.1(b) The ratio of coefficients A/B is 

(a) 
~ = 8rrilv

3 = 8rr(6.626 x I0-34Js) x (500 x 10
6

s-')
3 =] 7.73 x 10_"Jm-'s] 

B c3 (2.998 x 108 m s 1)3 · · 
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(b) The frequency is 

- c A - 8:n:h - 8:rr(6.626 X w-34 
J s) -16 2 o-28 -3 I v-- so----- - . xi Jm s 

). B /..3 (3.0 X 10 2 m )3 

E13.2(b) A source approaching an observer appears to be emitting light of frequency 

v 
Vapproaching = --5 [13.15, Section 13.3] 

l--
c 

l 
Since vex !:' /..0 b, = (l- sf c)/.. 

For the light to appear green the speed would have to be 

s = (t- Aob') c = (2.998 x 108 m s- 1) x (t- 520 
nm) = 16.36 x 107 m s- 1 I 

/.. 660 nm 

or about 1.4 x 108 m.p.h. 

(Since s::::::::: c, the relativistic expression 

(
l +(s/c))'i2 

v b - v 0
'- l -(sf c) 

should really be used. It gives s = 7.02 x 107 m s- 1.) 

E13.3(b) The linewidth is related to the lifetime r by 

5.31 cm- 1 5.31 cm- 1 

ov = =:.__;..:-::..__ [13.19] so r = ps 
rjps ov 

(a) We are given a frequency rather than a wavenumber 

(5.31 cm- 1) x (2.998 x 1010 em s- 1) 3 v = vjc so r = 
6 1 

ps = 1.59 x 10 ps 
IOOxiOs 

or lt.59 ns I 

5.31 cm- 1 

(b) r = 1 ps = 12.48 psI 
2.l4cm 

E13.4(b) The linewidth is related to the lifetime r by 

5.31 cm- 1 (5.31 cm- 1)c 
0 v = so li v = c::.:==----':.::. 

rjps rjps 

(a) If every collision is effective, then the lifetime is 1/(l.O X 109 s- 1) = l.O X w-9 s = l.O X 103 ps 

(5.31 cm- 1
) x (2.998 x 1010 em s- 1

) s 1 1 1 liv = 
3 

= 1.6 x 10 s- = 160 MHz 
1.0 x 10 
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(b) If only one collision in lOis effective, then the lifetime is a factor of lO greater, 1.0 x 104 ps 

_ (5.31 em- 1) x (2.998 x 1010 em s- 1) 7 -I 1 1 ov = 
4 

= 1.6 x 10 s = 16 MHz 
1.0 X 10 

E13.5(b) The frequency of the transition is related to the rotational constant by 

hv = t:.E = hct:.F = hcB[1(1 +I)- (1- 1)1] = 2hcB1 

where J refers to the upper state (J = 3). The rotational constant is related to molecular structure by 

where 1 is moment of inertia, merr is effective mass, and R is the bond length. Putting these expressions 
together yields 

/jJ 
v = 2cB1 = ~--= 

2rrmcrrR2 

The reciprocal of the effective mass is 

_
1 

_ 1 _ 1 (12u)- 1 + (15.9949u)- 1 
25 1 m =m +m = =8.78348x 10 kg-

,rr c 0 1.66054x I0-27 kgu- 1 

So v 
(8.78348 x 1025 kg- 1) x (1.0546 x 10-34 J s) x (3) 1 11 1 1 

2rr(ll2.81 x 10 I2m)2 = 3.4754 x 10 s-

E13.6(b) (a) The wavenumber of the transition is related to the rotational constant by 

hcv = t:.E = hct:.F = hcB[1(1 +I)- (1- 1)1] = 2hcB1 

where J refers to the upper state (J = 1). The rotational constant is related to molecular structure by 

/j 
B=--

4rrci 

where I is moment of inertia. Putting these expressions together yields 

_ li.! hi (1.0546 x 10-34 J s) x (I) 
v = 281 = -2,.-c-I so I = cv = ~2-rr-,(2""."'99,c8::-:-cx"'l:::0';,1 0"c-'m:..:.._s--,-,1 )-x"--;(.,-160._0'93:-em-"1) 

I = 13.307 X 10-47 kg m2 1 

(b) The moment of inertia is related to the bond length by 

( 
I ) I/2 

I= meffR2 soR = -
m,rr 

_
1 

_ 1 _ 1 (1.0078 u)- 1 + (80.9163 u)- 1 
26 1 m = m + m = = 6.0494 x 10 kg-

otT H Be 1.660 54 X 10-2? kg U I 
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andR= [(6.0494 X 1026 kg- 1) X (3.307 x 10-47 kgm2)j 112 

= 1.414 x I0- 10m = 1141.4 pm I 

E13.7{b) The wavenumber of the transition is related to the rotational constant by 

hcu = !>.£ = hcb.F = hc8[J(J +I)- (J- I)J] = 2hc8J 

where J refers to the upper stale. So wavenumbers of adjacent transitions (transitions whose upper states 

differ by I) differ by 

It h 
t>.u = 28 =--so 1 = ---

2rrci 2rrc6.V 

where I is moment of inertia, lllcff is effective mass, and R is the bond length. 

( 1.0546 x 10-34 J s) I , I 
So I = = 5.420 x 10-46 kg m-

2rr(2.9979 X 10 10 emS I) X (1.033 em I) 

The moment of inertia is related to the bond length by 

( 
1 ) 1/2 

I= mcrrR2 so R = -
111cff 

_ 1 _ 1 _ 1 (18.9984u)- 1 +(34.9688u)- 1 , 5 1 
Ill =Ill +Ill = = 4.891 96 X IO- kg-

cff F Cl 1.660 54 X lQ-27 kg U I 

andR= [(4.89!96 X 1025 kg- 1) X (5.420 X I0-46 kgm2)j 1/2 

= 1.628 x 10-IO m = 1162.8 pm I 

E13.8(b) The rotational constant is 

n n 
8 = -- = -,------.,-"---~ 

4rrc/ 4rrc(2moR2 ) 
so R = ( 

1i )'12 

8ncmoB 

where I is moment of inertia, merr is effective mass, and R is the bond length. 

( 
(1.0546 x 10-34 J s) 

R-
- 8rr(2.9979 X IOIOem s- 1) X (15.9949 U) X (1.66054 X 10-27 kg U 

= 1.1621 x Jo- 10 m = 1116.21 pm I 

1/2 

I )(0.390 21)) 

E13.9(b) This exercise is analogous to Exercise 13.9(a), but here our solution will employ a slightly different 

algebraic technique. LetR =Roc. R' =Res, 0 = 16 0, C = 12 C. 

li 
I = -- [Comment 13.4] 

4rr8 

1.054 57 x w-34 1 s 
I(OC32S) = ---,---,----'----,--~~~=--,--, = 1.3799 X w-45 kg m2 = 8.3101 X w- 19 u m2 

(4rr) X (6.0815 X J09 S ) 

Oc"s -:--':I'-'.0-'-5-'-4;:.-57:=x-,:!_::_0_-
3
:-;

4
;;J-=s---,-, 45 2 19 , I( - )=-; 1 =1.4145x!O- kgm =8.5184x!O- um-

(4rr) X (5.9328 X J09 S ) 
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The expression for the moment of inertia given in Table \3.1 may be rearranged as follows. 

R") '2 2 R2 2 RR' 'R" = UIAJ11 - + mcmR -lilA + IIIAJ11C - 111(: -

= mA(ms + mc)R2 + mc(mA + ms)R'2 + 2mAmcRR' 

Let me = 11132s and n( = m345 

/111 InA 'J () 1 

- = - (ms + mc)R- + (mA + ms)R- + 2mARR 
me me 
I'm' "'A , , ,? , -,- = -, (ms + mc)R- + (mA + ms)R- + 2mARR 
111c "'c 

Subtracting 

lm I'm' [("'A) ("'A) , J ' - - -,- = - (ms +me) - -, (ms +me) R-
mc me me me 

Solving for R2 

(
lm I'm') 

R'l = iiiC - ~ = m~lm- mcl'm' 

[(~) (ms +me) - (~) (ms +me' l] mamA (n(- me) me me 

Substituting the masses, with mA =mo. ms =me, me = ffiJ2s, and m(: = ffi34s 

m = (15.9949 + 12.0000 + 31.9721) u = 59.9670 u 

m' = (15.9949 + 12.0000 + 33.9679) u = 61.9628 u 

2 (33.9679 u) x (8.3101 x 10- 19 u m2) x (59.9670 u) 
R =~~~~~~~---~~~~~~~ 

(12.0000 u) x (15.9949 u) x (33.9679 u- 31.9721 u) 

(33.9721 u) x (8.5184 x 10- 19 u m2 ) x (61.9628 u) 

(12.0000 u) x (15.9949 u) x (33.9679 u- 31.9721 u) 

51.6446 X 10- 19 m2) 20 ' 
= 383.071 = 1.3482 x 10- m-

R= 1.161Tx I0- 10 m =1116.1pmi=Roe 

(a) 

(b) 

Because the numerator of the expression for R2 involves the difference between two rather large numbers 

of nearly the same magnitude, the number of significant figures in the answer for R is certainly no greater 
than 4. Having solved for R, either equalion (a) or (b) above can be solved for R'. The result is 

R' = 1.559 x 10-IO m = 1155.9 pm I= Res 

E13.10(b) The wavenumber of a Stokes line in rotational Raman is 

ilstoko. = V;- 28(21 + 3) [!3.42a] 

where J is the initial (lower) rotational state. So 

ilstoke< = 20623 cm- 1 - 2(1.4457 cm- 1
) x [2(2) + 3] = 120603 cm- 1 I 
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E13.11(b) The separation of lines is 48, so 8 = ! x (3.5312 cm- 1) = 0.882 80 cm- 1 

( 
li )1/2 

Then we useR= [Exercise 13.8(a)] 
4rrmerrcB 

with m,rr = !mc'9F) = ! x (18.9984 u) x (1.6605 x w-27 kg u- 1) = 1.577 342 x w-26 kg 

1/2 

I) X (0.882 80 em I)) ( 
1.0546 x w-34 J s 

R-
- 4rr(l.577 342 X 10 26 kg) X (2.998 X IQIO emS 

= 1.4178S X IO-\Om=ll41.78pml 

E13.12(b) Polar molecules show a pure rotational absorption spectrum. Therefore, select the polar molecules based 

on their well-known structures. Alternatively, determine the point groups of the molecules and use the 

rule that only molecules belonging to C11 , C11v, and Cs may be polar, and in the case of C11 and C11v, that 
dipole must lie along the rotation axis. Hence all are polar molecules. 

Their point group symmetries are 

(a) H20. C2,, (b) H202, C2. (c) NH3, C3,, (d) N20. C,,, 

~show a pure rotational spectrum. 

E13.13(b) A molecule must be anisotropically polarizable to show a rotational Raman spectrum; all molecules 

except spherical rotors have this property. So I CH2Cl21. I CH3CH31. and I N20 I can display rotational 
Raman spectra; SF6 cannot. 

E13.14(b) The angular frequency is 

E13.15(b) 

W = (~) l/
2 

= 21fV SO k = (2rrv)2m = (2rr)2 X (3.0 S- 1)2 X (2.0 X J0-3 kg) 

k=l071 Nm- 1
1 

( 
k ) 1/2 

(I)= nletT w' = (...;...) 
112 

(prime= 2H 37CI] 
111etT 

The force constant, k, is assumed to be the same for both molecules. The fractional difference is 

(
...;...) 1/2 - (-k ) 1/2 (~) 1/2 - (-1 ) 1/2 

w': w = ...:...'"~''""..:..._(~~k~-)...;l,..,~~,c'::.:"..:...__ = -'-'-'"'"rrc:...( ___ 1=--)...;.,17.,;2':::"~- = (:;: r2- I 

111eff 111cff 

_w'_-_w = (-m~_rr)' 12 
_ 1 = [-".:.'H:...m...:c:::l_ x (m2H +m37c1) !'12 

_ 1 
w meff mH + mc1 (m2H x m37et) 

= [ (1.0078 u) x (34.9688 u) 
(1.0078 u) + (34.9688 u) 

= -0.284 

Thus the difference is 128.4 percent I 

(2.0140 u) + (36.9651 u) !112 
X -1 

(2.0140 u) x (36.9651 u) 
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E13.16(b) The fundamental vibrational frequency is 

w = (-k-) 112 

= 2rrv = 2rrcV so k = (2rrcii)2merr 
m,rr 

We need the effective mass 

m;J = ml 1 + m2 1 = (78.9183 u)- 1 + (80.9163 u)- 1 = 0.0250298 u- 1 

[2rr(2.998 x 1010 em ,- 1) x (323.2 cm- 1)]2 x (1.66054 x 10-27 kg u- 1) 
k = .:.__-'-------'-----=o'"'.o'"'2..,.5 .,..02'"'9-=8-u.:..:.,-1 -'-------=--'-

E13.17(b) The ratio of the population of the ground state (No) to the first excited state (NJ) is 

No (-hv) (-hcv) - =exp -- =exp --
N, kT kT 

(a) 
No ( -(6.626 x 10-34 J s) x (2.998 x 1010 em ,- 1) x (321 cm-1)) ~ 
-=exp =~ 
N1 (1.381xl023JK 1)x(298K) 

(b) 
No (-(6.626 x I0-34 Js) x (2.998 x 10 10 cms- 1) x (321cm- 1)) r;;-u;l 
-=exp =~ 
N1 (1.381 x 10 23JK 1) x (800K) 

E13.18(b) The relation between vibrational frequency and wavenumber is 

w = (_.!:.__) 
112 

= 2rrv = 2rrcV so jj = _l_ (_.!:.__) 
112 

nleff 2.rrc llleff 

(km;J>I/2 

2rrc 

The reduced masses of the hydrogen halides are very similar, but not identical 

We assume that the force constants as calculated in Exercise 13.18(a) are identical for the deuterium 
halide and the hydrogen halide. 

ForDF 

_ 1 (2.0140 u)- 1 + (18.9984u)- 1 

3 3 
, 6 -I 

m - = . 071 x 10- kg 
off - 1.66054 X 10-27 kg U I 

{(3.3071 x 1026 kg- 1) x (967.04kgs-2)] 112 
1 -II 

"= 2rr(2.9979 x IOIOcms 1) = · 3002·3 em · 

For DC! 

-I (2.0140 u)- 1 + (34.9688 u)- 1 3 1 o26 k -I 
m,rr = = . 624 x 1 g 

1.66054 X 10-27 kg U I 

{(3.1624 x 1026 kg- 1) x (515.59kgs-2)] 112 1 _ 1 1 v = -'-'----::--:::-=:::--'--:-::-Cii----:--.-:'--'-- = . 2143.7 em . 
2rr(2.9979 x !010 cms I) 
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For DBr 

_ 1 (2.0140 u)- 1 + (80.9163 u)- 1 
m,rr = =.:...:..:-'-::.,:..,--'-:'-':;';:':-.:..:_-'-i-- = 3.0646 x I 026 kg -I 

1.66054 X IQ 27 kg U I 

{(3.0646 x 1026kg- 1
) x (411.75kgs-2)) 1i 2 

1 ~ 1 

i! = '-'-----;;--;;;-=;';;--'-o-;;-ic,--::o:''----'-'-- = . 1885.8 em 1 
. 

2rr(2.9979 x I0 10 ems 1) 

ForDI 

_ 1 (2.0140 u)- 1 + (126.9045 u)- 1 
Ill = = 3.0376 X 1026 kg- I 

off 1.66054 X IQ-27 kg U I 

{(3.0376 x I026 kg- 1) x (314.21 kgs-2)) 112 
1 _ 1 

i! = .:..:... __ -=--:::-=o::-_.:__,-::-e,.--..,-"'---....:..:.- = 1640.1 em 1 . 
2rr(2.9979 x 1010 ems 1) 

E13.19(b) Data on three transitions are provided. Only two are necessary to obtain the value of iJ and Xc. The third 
datum can then be used to check the accuracy of the calculated values. 

E13.20(b) 

b.G(v =I +- 0) = i!- 2i!x, = 2345.15 em- 1 [13.57] 

b.G(v = 2 +- 0) = 2i!- 6i!x, = 4661.40 em- 1 [13.58] 

Multiply the first equation by 3, then subtract the second. 

i! = (3) x (2345.15 em- 1) - (4661.40 em- 1) = 12374.05 em- 1 I 

Then from the first equation 

i!- 2345.15 em- 1 

Xc = 
2i! 

(2374.05- 2345.15)e~-l = 16.087 X IQ-31 
(2) x (2374.05 em 

Xc data are usually reported as Xc ii which is 

b.G(v = 3 +- 0) = 3i!- 12vx, = (3) x (2374.05 em- 1
)- (12) x (14.45 em- 1

) 

= 6948.74 em- 1 

which is close to the experimental value. 

b.Gv+l/2 = i!- 2(v + l)x,i! [13.57] where b.Gv+l/2 = G(v +I)- G(v) 

Therefore, since 

a plot of 6.Gv+l/2 against v should give a straight line which gives (I - 2xc)li from the intercept at 
v = 0 and - 2xc V from the slope. We draw up the following table 
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v 0 2 3 4 

G(v)fem- 1 

~Gv+lt2fcm-l 
1144.83 3374.90 5525.51 7596.66 9588.35 

2230.07 2150.61 2071.15 1991.69 

The points are plotted in Figure 13.1. 

2200 

' E 
u s 2100 

t 

" <I 

2000 

0 2 3 

v Figure 13.1 

The intercept lies at 2230.51 and the slope = -76.65 cm- 1; hence Xc V = 39.83 cm- 1
• 

Since V - 2\·c V = 2230.51 cm- 1 it follows that V = 2310.16 cm- 1 

The dissociation energy may be obtained by assuming that a Morse potential describes the molecule and 

that the constant De in the expression for the potential is an adequate first approximation for it. Then 

v V2 (2310.16cm- 1)2 3 -1 
D, =- [13.55] = -- = 1 = 33.50 x 10 em = 4.15 eV 

4x, 4x,v (4) x (39.83 em ) 

However, the depth of the potential well De differs from Do. the dissociation energy of the bond, by the 

zero-point energy; hence 

Do= D,- ~v = (33.50 x 103 em- 1
)- (1) x (2310.16 em- 1

) 

= 13.235 x 104 em-' I= 14.01 eV I 

E13.21(b) The wavenumber of an R-branch IR transition is 

VR = v + 2B(J +I) [13.62c] 

where J is the initial (lower) rotational state. So 

i!R = 2308.09 em- 1 + 2(6.511 em- 1) x (2 +I)= 12347.16 em- 1 I 
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E13.22(b) See Section 13.10. Select those molecules in which a vibration gives rise to a change in dipole moment. 

It is helpful to write down the structural formulas of the compounds. The infrared active compounds are 

COMMENT. A more poweriul method for determining infrared activity based on symmetry considerations is 

described in Section 13.15. 

E13.23(b) A nonlinear molecule has 3N - 6 normal modes of vibration, where N is the number of atoms in the 

molecule; a linear molecule has 3N - 5. 

(a) C6H6 has 3(12)- 6 =~normal modes. 

(b) C6H6CH3 has 3(16)- 6 = 1421 normal modes. 

(c) HC=C--c=CH is linear; it has 3(6)- 5 = I.TIJ normal modes. 

E13.24(b) (a) A planar AB, molecule belongs to the D3h group. Its four atoms have a total of 12 displacements, 

of which 6 are vibrations. We determine the symmetry species of the vibrations by first determining 

the characters of the reducible representation of the molecule formed from all 12 displacements and 

then subtracting from these characters the characters corresponding to translation and rotation. This 

latter information is directly available in the character table for the group D3h· The resulting set of 

characters are the characters of the reducible representation of the vibrations. This representation can 

be reduced to the symmetry species of the vibrations by inspection or by use of the little orthogonality 

theorem. 

D3h E O"h 2C, ZS3 3c; 3av 

X (translation) 3 0 -2 -I 

Unmoved atoms 4 4 I 2 2 
X (total, product) 12 4 0 -2 -2 2 
x (rotation) 3 -I 0 2 -1 -I 

x (vibration) 6 4 0 -2 0 2 

x (vibration) corresponds to A; +AI+ 2£'. 

Again referring to the character table of D3h, we see that E' corresponds to x andy, A~ to z; hence 

I A~ and £' are IR active I· We also see from the character table that £' and A; correspond to the 

quadratic terms; hence I A; and E' are Raman active I· 

(b) A trigonal pyramidal AB3 molecule belongs to the group C3v· In a manner similar to the analysis 

in part (a) we obtain 

C]v E 2C, 30", 

x (total) 12 0 2 
x (vibration) 6 -2 2 

x (vibration) corresponds to 2Al + 2E. We see from the character table that I A1 and E I are IR 

active and that I A1 + E I are also Raman active. Thus all modes are observable in both theIR and 

the Raman spectra. 
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E13.25(b) (b) The boat-like bending of a benzene ring clearly changes the dipole moment of the ring, for the 
moving of the C-H bonds out of the plane will give rise to a non-cancelling component of their 

dipole moments. So the vibration is I IR active I. 
(a) Since benzene has a centre of inversion, the exclusion rule applies: a mode which is IR active (such 

as this one) must be j Raman inactive j. 

E13.26(b) The displacements span Atg + Atu + A2g + 2Etu + Elg· The rotations Rx and Ry span E1g. and the 

translations span E1u + Alu· So the vibrations span I Atg + A2g + E1u I 

P13.2 

Solutions to problems 

Solutions to numerical problems 

{;).. 2 (2kTin2)
112 

- =- -- [13.17] 
A c m 

( 
2 ) X ((2) X (1.381 X J0-23 JK- 1) x (298K) X (ln2))

1
/
2 

= 2.998 x IOBms 1 (m(u) X (1.6605 X 10 27 kg) 

1.237 x w-s 
(m/u)l/2 

(a) For I H35CI, m "" 36 U, so ": ""12.1 X w-6 1 

(b) For 127135 CI, m"" 162 U, so": ""19.7 X w-7 1 

For the second part of the problem, we also need 

{;~ = ov = ~ (2kTin2)1/2 [13.17] = {;).. [",)..«I] 
v v c m A 11. 

(a) ForHCI,v(rotation) ""2Bc"" (2) x (10.6cm- 1) x (2.998 x l0 10 cms- 1) 

""6.4 x 10 11 s- 1 or 6.4 x 10 11 Hz 

Therefore, ov(rotation)"" (2.1 X w-6) X (6.4 X 10 11 Hz)= lu MHz I 
v(vibration) ""2991 em- 1 [Table 13.2]; therefore 

/;v(vibration)"" (2.1 X w-6 ) X (2991 em- 1) =I 0.0063 em- 1 I 

(b) For JCI, v(rotation) "" (2) x (0.1142 em- 1) x (2.998 x 1010 em s- 1) ""6.8 x 109 Hz 

ov(rotation)"" (9.7 X w-7) X (6.8 X 109 Hz)= 16.6 kHz I 
iJ(vibration) ::::::: 384cm- 1 

OV(Vibration) ""(9.7 X J0-7
) X (384em-l) ""10.0004em-ll 
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COMMENT. ICI is a solid which melts at 27.2 "C and has a significant vapor pressure at 25 "C. 

Rotational line separalions are 2B (in wavenumber units), 2Bc (in frequency units), and (28)- 1 in 

wavelength units. Hence the transitions are separated by 1596 GHZ 1.119.9 cm- 1 I. and I 0.503 mm !-

Ammonia is a symmetric rotor (section 13.4) and we know that 

h 
B = -- [13.30] 

4rrc/1.. 

and from Table 13.1, 

2 (111AI1lB) , I~= mAR (I- cosO)+ -- R-(1 + 2cos8) 
Ill 

IliA= 1.6735 X w-27 kg. lliB = 2.3252 X w-26 kg, and Ill= 2.8273 X w-26 kg with R = 101.4 pm 

and e = 106"47', which gives 

{~ = (1.6735 X 10-27 kg) X (101.4 X 10- 12 m) 2 
X (I- COS 106°47') 

+ ((1.6735 X IQ-27 ) X (2.3252 X IQ-26 kg')) 
2.8273 x I 0 26 kg 

X (101.4 X IQ-]2 m)2 X (I+ 2COS 106°47') 

= 2.815S X 10-47 kg m2 

Therefore, 

1.05457 x w-34 J s I I 
B ---,---,-::c:::=---c=--:::----::-=,.,...-::::-:;:;-:--,.2 = 994.1 m -I = 9. 941 em-~ 

= (4rr) X (2.9979 X 108m S I) X (2.8158 X 10 47 kg m) 

which is in accord with the data. 

P13.6 Rotation about any axis perpendicular to the C6 axis may be represented in its essentials by rotation of 
the pseudolinear molecule in Figure 13.2(a) about the x-axis in the figure. 

0 0 
2mH{D) 

X Figure 13.2(a) 

The data allow for a determination of Rc and RH(D) which may be decomposed into Rcc and RcH(D)· 

/H = 4mHR~ + 4mcRb = 147.59 X w-47 kg m2 

/o = 4moR~ + 4mcRb = 178.45 X w-47 kg m2 
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Subtracting IH from /o (assume RH = Ro) yields 

4(mo - mH)R~ = 30.86 x 10-47 kg m2 

4(2.0 1417 U - 1.0078 u) X ( 1.660 54 X 10-27 kg U -I) X (R~) = 30.86 X 10-47 kg m2 

R~ = 4.6169 x I0-20 m2 RH = 2.149 x I0- 10 m 

R' _ (147.59 x 10-
47 kg m2)- (4mHR~) 

c- 4mc 

= 
(147.59 x I0-47 kgm2)-(4) x (1.0078u) x (1.66054 x I0-27 kgu- 1) x (4.6169x I0-20 m2) 

(4)x(l2.0llu)x(l.66054xl0 27 kgu I) 

= 1.4626 x 10-20 m2 

Rc = 1.209 x 10-IO m 

Figure 13.2(b) shows the relation between RH, Rc, Rcc, and RcH-

Figure 13.2(b) 

Rc 1.209 x I0-
10 m 10 I I 

Rcc = -- = = 1.396 x 10- m = 139.6 pm 
cos 30° 0.8660 

RH -Rc 
RcH = """""-::-~ 

cos 30° 

Reo= RcH 

0.940 X 10-IO -

0
_
8660 

= 1.085 x 10-IO = \108.5 pm \ 

COMMENT. These values are very close to the interatomic distances quoted by Herzberg in Electronic Spectra 

and Electronic Structure of Polyatomic Molecules, p. 666 (Further reading, Chapter 14), which are 139.7 and 
108.4 pm respectively. 

P13.8 v = 28(1 +I) [13.37] = 2B 

Hence, B( 1HCI) = 10.4392cm-1, B(2HCI) = 5.3920cm- 1 



P13.10 

252 INSTRUCTOR'S SOLUTIONS MANUAL 

n 2 B = -- [13.24] I= m0rrR [Table 13.1] 
4rrc/ 

n 
- = 2.79927 x 10-44 kgm 
4rrc 

111 
HCI = ((1.007825u) x (34.96885u)) x (1.66054 x 10-27k u-1) 

orr( ) (1.007 825 u) + (34.968 85 u) g 

= 1.626 65 X 10-2? kg 

111 
(DC!)= ((2.0140u) x (34.96885u)) X (1.66054 x I0-27 k u-1) 

off (2.0 140 u) + (34.968 85 u) g 

= 3.1622 X 10-27 kg 

R(HCI) = 1.283 93 x 10- 10 m = JI28.393 pm J 

R('HCI) = 1.2813 x 10-IO m = JI28.13 pm J 

I = 1.648 48 X 10-20 m2 
) 

= I 6417 x 10-20 m2 
I) . 

COMMENT. Since the effects of centrifugal distortion have not been taken into account, the number of sig· 

nificant figures in the calculated values of R above should be no greater than 4, despite the fact that the data 

are precise to 6 figures. 

From the equation for a linear rotor in Table 13.1 it is possible to show that Im = mamc(R + R')2 + 
mambR2 + mbmcR'2. 

m( 160) = 15.9949 u, m( 12C) = 12.0000u, m('2S) = 31.9721 u, andm('4S) = 33.9679u. Hence, 

/( 160 12C32S)fu = (8.5279) x (R + R')2 + (0.20011) x (15.9949R2 + 31.9721R'2) 

1(16Q 12C34 S)fu = (8.7684) x (R + R')2 + (0.19366) x (15.9949R2 + 33.9679R"') 
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The spectral data provides the experimental values of the moments of inertia based on the relation 

ii = 2cB(J +I) [13.37] with 8 = ll/4rrc/ [13.24]. These values are set equal to the above equations 
which are then solved for R and R' . The mean values of I obtained from the data are 

l( 160 12C32S) = 1.37998 X Jo-45 kg m2 

/( 160 12C34 S) = 1.41460 X 10-45 kg m2 

Therefore, after conversion of the atomic mass units to kg, the equations we must solve are 

1.37998 x J0-45 m2 = (1.4161 x J0-26 ) X (R+R')2 + (5.3150 x J0-27R2) 

+ ( 1.0624 X 10-26 R") 

1.4!4 60 x 10-45 m2 = (1.4560 x J0-26 ) X (R + R')2 + (5.1437 X J0-27 R2 ) 

+ (1.0923 X J0-26R'2) 

These two equations may be solved for Rand R'. They are tedious to solve by hand, but straightforward. 
Exercise 13.9(b) illustrates the details of the solution. Readily available mathematical software can be 

used to quickly give the result. The outcome is R = ]116.28 pm] and R' = ]155.97 pm ]. These values 
may be checked by direct substitution into the equations. 

COMMENT. The starting point of this problem is the actual experimental data on spectral line positions. 

Exercise 13.9{b) is similar to this problem; its starting point is, however, given values of the rotational constants 

B, which were themselves obtained from the spectral line positions. So the results for Rand R' are expected 

to be essentially identical and they are. 

Question. What are the rotational constants calculated from the data on the positions of the absorption 
lines? 

The wavenumbers of the transitions with !:J.v = + 1 are 

t.G,.+I/2 = v- 2(v + l)x,i! [13.57] and 
jj2 

D, = -- [13.55] 
4XcV 

A plot of .6-GI'+l/2 against v + I should give a straight line with intercept Vat v + I = 0 and slope 

-2xcV. 

Draw up the following table 

v+l 2 3 

t.G,.+I/2/cm- 1 284.50 283.00 281.502 

The points are plotted in Figure 13.3. 
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u+l Figure 13.3 

The intercept is at 286.0, so V = 286 cm- 1. The slope is -1.50, so Xc V = 0.750 cm- 1. It follows that 

(286cm- 1) 2 

D,=(4)x(0.?50cm 1)=27300cm-
1

, or 3.38eV 

The zero-point level lies at 1142.81 cm- 1 I and so Do= 13.36 eV 1. Since 

(22.99) X (126.90) -
m,rr = (22.99) + (126.90) u = 19.464 u 

the force constant of the molecule is 

k = 4;r 2merrc2 V2 [Exercise 13.16(a)] 

= (4rr 2) X (19.464) X (1.6605 X I0-27 kg) X ((2.998 X 10 10 cms-l) X (286cm- 1))' 

=193.8Nm-II 

The set of peaks to the left of center are the P branch, those to the right are the R branch. Within the rigid 
rotor approximation the two sets are separated by 4B. The effects of the interactions between vibration 
and rotation and of centrifugal distortion are least important for·transitions with small J values hence 
the separation between the peaks immediately to the left and right of center will give good approximate 
values of B and bond length. 

(a) VQ(J) = v [13.62b] = 2143.26cm- 1 

(b) The zeroRpoint energy is ! ii = 1071.63 cm- 1. The molar zeroRpoint energy in J mol-l is 

NAhc x (1071.63cm- 1) = NAhc x (1.07163 x 105 m- 1) 

= 1.28195 x 104 Jmol- 1 =112.8195kJmol- 1 1 
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!1-( ) = = X (I. 054 X 10 - kgu ) ''c'"o memo ((12.0000u) x (15.9949u)) 66 _,7 _ 1 

mc+mo (12.0000u)+(l5.9949u) 

= 1.13852 X I0-26 kg 

k = 4rr 2c2 x (1.138 52 x 10-26 kg) x (2.143 26 x 105 m- 1) 2 = 11.855 63 x 103 N m- 1 I 

(d) 48"' 7.655cm- 1 

(e) 

B "'11.91 cm- 1 I [4 significant figures not justified] 

~~ li 
B = -- [13.24] = , [Table 13.1] 

4rrc/ 4rrc!1-R-

R2 = _ll_>. - = ll = I 287 x 10-20 m2 

4rrci"B (4rrc) x (1.13852 x 10 26 kg) x (191m 1) · 

R= 1.13 x I0- 10 m=lll3pml 

V(R) = hcD, {I - e-a(R-R,) j 2 [13.54] 

V = _:::___ = 936.8cm-l Xe\' = 14.15 cm- 1 

2rrc 

( 
lllcff ) 

112 
lln

2 

a = 2hcDc w Xc = 2merrw 
v 

Dc=-
4xc 

(RbH) (1.008) X (85.47) u = 1.654 x 10-27 kg 111
'

0 
"' (1.008) + (85.47) 

i/ (936.8 cm- 1 ) 2 - 1 
D, = -4,-.,-v = (4) x 

04
_IScm-') = 15505cm- (1.92eY) 

( 
mcrr )

112 
( mcrr )

112 

a= 2rrv -- [13.54] = 2rrciJ --
2hcDc 2hcDc 

= (2rr) x (2.998 x I0 10 cms- 1) x (936.8cm- 1) 

( 
1.654 x lo-27 kg ) '

12 

X -::(2'"')-x---c( :CIS"S;:;0:-:5:--c-m-..,17) -x--;c( 6,.:. 6:::2:::6,.:x_:_:,I.;,0=-3"4"""'J"'s"-) -x-("'2:-;. 9"9"'8-x---:-1 o=t 0_c_m_s---.:-1 ) 

I 
= 9.144 x 109 m- 1 = 9.44 nm- 1 = .,.-,=.,.----

0.1094 nm 

Therefore, V(R) =II- e-IR-R,.J/(D.I094"ml)2 
lu.:Dc 
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with R, = 236.7 pm. We draw up the following table 

Rfpm 50 100 200 300 400 500 600 700 800 

V /(hcD,) 20.4 6.20 0.159 0.193 0.60 I 0.828 0.929 0.971 0.988 

These points are plotted in Figure 13.4 as the line labeled J = 0 

0 200 400 600 

R/pm 

800 1000 

I . 
For the second part, we note that B ex R2 and wnte 

• (R~) V1 = V + hcB,J(J + I) x R' 

Figure 13.4 

with Be the equilibrium rotational constant, Be= 3.020 cm- 1. 

We then draw up the following table using the values of V calculated above 

R(pm 50 100 200 300 400 600 800 1000 

R, 
R 

4.73 2.37 1.18 0.79 0.59 0.39 0.30 0.24 

v 
he De 

20.4 6.20 0.159 0.193 0.601 0.929 0.988 1.000 

v:o 
he De 

27.5 7.99 0.606 0.392 0.713 0.979 1.016 1.016 

vso 48.7 13.3 1.93 
he De 

0.979 1.043 1.13 1.099 1.069 

Yioo 
64.5 

he De 
17.2 2.91 1.42 1.29 1.24 1.16 1.11 

These points are also plotted in Figure 13.4 
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(a) Vibrational wavenumbers (Vjcm- 1) computed by PC Spartan ProTM at several levels of theory are 

tabulated below, along with experimental values: 

A, A, s, 

Semi-empirical PM3 412 801 896 
SCF 6-316G** 592 1359 1569 
Density functional 502 1152 1359 
Experimental 525 1151 1336 

The vibrational modes are shown graphically in Figure 13.5. 

Figure 13.5 

(b) The wavenumbers computed by density functional theory agree quite well with experiment. Agree

ment of the semi-empirical and SCF values with experiment is not so good. In this molecule, 

experimental wavenumbers can be correlated rather easily to computed vibrational modes even 
where the experimental and computed wavenumbers disagree substantially. Often, as in this case, 

computational methods that do a poor job of computing absolute transition wavenumbers still put 

transitions in proper order by wavenumber. That is, the modeling software systematically overes
timates (as in this SCF computation) or underestimates (as in this semi-empirical computation) the 

wavenumbers, thus keeping them in the correct order. Group theory is another aid in the assignment 

of transitions: it can classify modes as forbidden, allowed only in particular polarizations, etc. Also, 
visual examination of the modes of motion can help to classify many modes as predominantly bond

stretching, bond-bending, or internal rotation; these different modes of vibration can be correlated 
to quite different ranges of wavenumbers (stretches highest, especially stretches involving hydrogen 

atoms, and internal rotations lowest.). 

Summarize the six observed vibrations according to their wavenumbers (ii/cm- 1) : 

IR 870 1370 2869 3417 
Raman 877 1408 14 35 3407 
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(a) If HzOz were linear, it would have 3N - 5 = [II vibrational modes. 

(b) Follow the How chan in Figure 12.7. Structure 2 is not linear, there is only one C11 axis (a Cz), and 

there is a ah; the poinL group is I Czh 1- Structure 3 is not linear, there is only one C11 axis (a C2), no 

Uh, but two av; the point group is I Czv 1- Structure 4 is not linear, there is only one ell axis (a Cz), 

noah, no av; the point group is I Czl-
(c) The exclusion rule applies to structure 2 because it has a center of inversion: no vibrational modes 

can be both IR and Raman active. So structure 2 is inconsistent with observation. The vibrational 

modes of structure 3 span 3AI + Az + 2Bz. (The full basis of 12 cartesian coordinates spans 

4AI + 2Az + ZB1 + 4B2; remove translations and rotations.) The C2v character table says that five 
of these modes are IR active (3AI + 282) and all are Raman active. All of the modes of structure 4 

are both IR and Raman active. (A look at the character table shows that both symmetry species 
are IR and Raman active, so determining the symmetry species of the normal modes does not help 

here.) Both structures 3 and 4 have more active modes than were observed. This is consistent with 
the observations. After all, group theory can only tell us whether the transition moment must be zero 

by symmetry; it does not tell us whether the transition moment is sufficiently strong to be observed 

under experimental conditions. 

Solutions to theoretical problems 

Because the centrifugal force and the restoring force balance, 

we can solve for the distorted bond length as a funCtion of the equilibrium bond length: 

Classically, then, the energy would be the rotational energy plus the energy of the stretched bond: 

1 2 k(r - r )2 
£=-+ c e 

2/ 2 

How is the energy different form the rigid-rotor energy? Besides the energy of stretching of the bond, 
the larger moment of inertia alters the strictly rotational piece of the energy. Substitute JL,:; for I and 

substitute for rc in terms of re throughout: 

]2(1- fLW2 jk)2 fL2W4r2 
So E = + ' . 

2wJ 2k( I - fLW2 jk)2 

Assuming that JLCt}jk is small (a reasonable assumption for most molecules), we can expand the 
expression and discard squares or higher powers of J.L(;} fk: 

(Note that the entire second term has a factor of JLW2 fk even before squaring and expanding the denom

inator, so we discard all terms of that expansion after the first.) Begin to clean up the expression by using 
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classical definitions of angular momentum: 

l=IW=J.tr2w SO w=ljfl,r~ 

which allows us to substitute expressions involving J for all w s: 

(At the same time, we have expanded the first term, part of which we can now combine with the last 

term.) Continue to clean up the expression by substituting I J J.l for r 2, and then carry the expression over 

to its quantum mechanical equivalent by substituting J(J + l)h2 for 1 2: 

J 2(J + ll 2 1>4 ~t 
2!3k 

Dividing by he gives the rotational term, F{J): 

J(J + l)h2 

F(J) "" 2hcl = 
J(J + I) 

4rrcl 

J'(J + l)'li'~t 
4rrc!3k 

where we have used li = hf2rr to eliminate a common divisor of h. Now use the definition of the 

rotational constant, 

Finally, use the relationship between the force constant and vibrational wavenumber: 

( k) 1/2 
j;. = Wvib = 2rrv = 2rrcV so 

483 
leaving F(J) ""BJ(J +I)- --:zl2 (J + 1)2 = BJ(J +I)- DJ2 (J + 1)2 

" 
~ 

where~. 

N ex ge-EfkT [Boltzmann distribution. Chapters 2 and 16] 

N1 ex g 1e-EJ!kT ex (21 + l)e-hcBJil+i)/kT [llJ = 21 +I for a diatomic rotor] 

The maximum population occurs when 

.'!._N <X 12- (21 + 1)2 X (hcB) I e-hcBJ(J+I)/kT = 0 
dJ 1 kT 

and, since the exponential can never be zero at a finite temperature, when 

2 (hcB) (21 +I) x kT = 2 

or when I max = (!!_)'I' 2hc8 
I 

2 
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kT 
For ICI, with - = 207.22 cm- 1 (inside front cover) 

he 

J - ---f301 (
207.22cm-')'

12 
1 

max- 0.2284cm 1 2 -~ 

For a spherical rotor, N1 ex (21 + 1)2e-1"'"11J+l)fkT [g1 = (21 + I)'J 
and the greatest population occurs when 

dNJ ex (sJ + 4- hc8(21 + I)') e-hcBJ(l+l)fkT = 0 
dJ kT 

which occurs when 

hc8(21 + 1)3 

4(21 +I)= kT 

( 
kT )'12 

oratlmax = -
hcB 2 

(
207.22 cm- 1

) '
12 

I ILl 
For CH4, lm" = 5.24 em I - 2 = ~ 

The energy levels of a Morse oscillator, expressed as wavenumbers, are given by: 

States are bound only if the energy is less than the well depth, De. also expressed as a wavenumber: 

Solve for the maximum value of v by making the inequality into an equality: 

( 1 )' 2 ( I) v + 2 v /4D, - v + z v + D, = 0. 

Multiplying through by 4Dc results in an expression that can be factored by inspection into: 

Of course, v is an integer, so its maximum value is really the greatest integer less than this quantity. 

Solutions to applications 

(a) The molar absorption coefficient e(v) is given by 

_ A(v) RTA(v) 
e(v) = -- = -- [13.4, 1.8, and 1.15] 

I[COz] lxco,P 
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where T = 298 K, I = 10 em, p = I bar, and xco, = 0.021. 

The absorption band originates with the 00 I -E- 000 transition of the anti symmetric stretch vibra

tional mode at 2349 cm- 1 (Figure 13.40). The band is very broad because of accompanying rotational 

transitions and lifetime broadening of each individual absorption (also called collisional broaden

ing or pressure broadening, Section 13.3). The s ectra reveals that the Q branch is missing so we 

conclude that the transition 6.1 = 0 is forbidden (Section 13.12) for the Dooh point group of C02. 
The P-branch (6.1 = -1) is evident at lower energies and the R-branch (~J = + l) is evident at 

higher energies. See Figures 13.16(a), (b). 

2 

1.5 

0.5 

0 
2280 

15 

5 

0 
2280 

2300 

2300 

Carbon dioxide IR band 

2320 2340 2360 2380 

Wavcnumber/cm·1 Figure 13,6(a) 

Molar absorption coefficient 

2320 2340 2360 2380 2400 

Wavenumber/cm-1 Figure 13.6(b) 



262 INSTRUCTOR'S SOLUTIONS MANUAL 

(b) 160-12C- 16o has two identical nuclei of zero spin so the C02 wavefunction must be symmetric 

w!r/t nuclear interchange and it must obey Bose-Einstein nuclear statistics (Section 13.8). Con
sequently, J takes on even values only for the v = 0 vibrational state and odd values only for the 

v = I state. The (v,J) states for this absorption band are (I ,J + I) +-- (0, J) for J = 0, 2, 4, . 
According to eqn 13.61, the energy of the (O,J) state is 

S(O,J) = !v + BJ(J + 1), 

where V = 2349 cm- 1 

2MoR2 2(0.01600kgmol- 1)(1 16.2 x 10- 12 m)2 

I= _N_A_ = -'----6.:'.0"-2:-2:--x-10"2"3_m_o_l--,-1 ___ _ 

= 7.175 x 10-46 kg m 2 (Table 13.1) 

" B = -,- [13.24] 
Srr-c/ 

6.626 X 10-)4 J S 
=~=-:c::-::----c-,..,--~~c--c-::-~-"" 

8rr 2(2.998 x IO'ms ')(7.175 x 10 46kgm') 

= 39.02m- 1 = 0.3902cm- 1 

The transitions of the P and R branches occur at 

vp = v- 2BJ [13.62b] 

and 

vR = v+2B(J+ I) [13.62c] 

where J = 0, 2, 4, 6 .. 

The highest energy transition oft he P branch is at V -48; the lowest energy transition of the R branch 

is at ii + 28. Transitions are separated by 48 ( 1.5608 cm- 1
) within each branch. The probability of 

each transition is proportional to the lower state population, which we assume to be given by the 

Boltzman distribution with a degeneracy of2J + I. The transition probability is also proportional to 

both a nuclear degeneracy factor (eqn 13.43) and a transition dipole moment, which is approximately 

independent of 1. The former factors are absorbed into the constant of proportionality. 

transition probability ex (21 + 1 )e -S(O.l)llcfkT 

A plot of the right-hand-side of this equation against 1 at 298 K indicates a maximum transition 

probability at 1max = 16. We "normalize" the maximum in the predicted structure, and eliminate 

the constant of proportionality by examining the transition probability ratio: 

transition probability for 1th state 

transition probability for lmax state 

(2J + 1 )e-Sill.lll"·fkT 

33e S(0.16)11c/RT 

= ( 2J + I ) e -(J2 +J -272)HIIcfkT 

33 

A plot, Figure 13.6(c), of the above ratio against predicted wavenumbers can be compared to the 

ratio A(ii)/Amax where Am,1x is the observed spectrum maximum ( 1.677). It shows a fair degree of 

agreement between the experimental and simple theoretical band shapes. 



SPECTROSCOPY 1: ROTATIONAL AND VIBRATIONAL SPECTROSCOPY 263 

Simple theoretical and exp. spectra 

A 

Figure l3.6(c) 

(c) Using the equations of justification 13.1, we may write the relationship 

r" A= e(v) lo [C02 ]dil 

The strong absorption of the band suggests that h should not be a very great length and that [C02] 
should be constant between the Earth's surface and h. Consequently, the integration gives 

A= e(v)[C02 ]il 

= c(V)/1 { x~~p} Dalton's law of partial pressures 

p and Tare not expected to change much for modest values of h so we estimate that p = I bar and 
T = 288 K. 

_ { (3.3 x 10-4
(1 x 105 Pa) l 

A= e(v)il (8.314Jlf- 1 mol- 1)(288({) 

= (0.0138 m-3 mol)e(v)il 

Transmittance= 10-A = w-(0.0138m-3moi)F.{i"•)ll [13.3] 

The transmittance surface plot, Figure 13.6(d), clearly shows that before a height of about 30m has 

been reached all of the Earth's IRradiation in the 2320-2380cm- 1 range has been absorbed by 
atmospheric carbon dioxide. 



P13.30 

264 INSTRUCTOR'S SOLUTIONS MANUAL 

0 

Figure 13.6(d) 

See C.A. Meserole, F.M. Mulcahy, J. Lutz, and H.A. Yousif, J. Chem. Ed., 74, 316 (1997). 

The question of whether to use CN or CH within the interstellar cloud of constellation Ophiuchus for 
the determination of the temperature of the cosmic background radiation depends upon which one has a 

rotational spectrum that best spans blackbody radiation of 2.726 K. Given Bo(CH) = 14.90 cm- 1, the 

rotational constant that is needed for the comparative analysis may be calculated from the 226.9 GHz 
spectral line of the Orion Nebula. Assuming that the line is for the 12C 14 N isotopic species and J +I +

J = I, which gives a reasonable estimate of the CN bond length ( 117.4 pm), the CN rotational constant 

is calculated as follows. 

v 
Bo = vfc= 2c(J+ 1) 

v 
(1) 

4c 

= 1.892 cm- 1 (2) 

Blackbody radiation at 2.726 K may be plotted against radiation wavenumber with suitable trans

formation of eqn 11.5. 

8nhcV3 

p(ii) = ehclifkT -I 

Spectral absorption lines of 12C 14N and 12C 1 Hare calculated with eqn 16.44. 

v(J + 1 +- J) = 28(1 + I) J = 0, I, 2, 3, ... 

The cosmic background radiation and molecular absorption lines are shown in the graph, Figure 13.7. 

It is evident that only CN spans the background radiation. 
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4 

p(i') at 2. 726 K 3 

IO-l7kg s-2 

2 

4 
8 

t1 
f~ 
r;l 

r 
20 

5 
8 il l 
'I ~~ 

CH 
1=0 I 

Q 0 
ll 1:· 

'! 
rl 

;I ~ 
:1 H 

30 40 50 60 
V /cm- 1 Figure 13.7 

(a) The Ht molecule is held together by a two-electron, three-center bond, and hence its structure is 
expected to be an equilateral triangle. Looking at Figure 13.8 and using the law of cosines 

B 

R2 = 2R~ - 2R~ cos( 180° - 28) 

= 2R~(l - cos(l20°)) = 3R~ 

Therefore 

Rc = Rj-/3 

lc = 3mR~ = 3m(Rj-/3)2 = mR2 

la = 2mRa = 2m(R/2)2 = mR2 /2 

Therefore 

lc = 2/s 

c 
111=11/H 

R 

9 ~ 30" 

Figure 13.8 
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h 2h h 
8=--= ,= ,[13.30] 

4rr ds 4rr cmR- 2rr cmR-

( 
Ji )1/2 ( !iNA )1/2 

R = 2rrcmB = 2rrcMHB 

(1.0546 X 10-l4 Js) X (6.0221 X 1023 mol-l) X ~ 

( 

(
10

-2m) )
1
/
2 

= S.764 x 10-ll m = ls7.64 pm I 

Alternatively the rotational constant C can be used to calculate R. 

h h c = -- = ' [13.30] 
4rrc/c 4JrcmR-

( 
h )l/2 ( llNA )1/2 

R = 4rrcmC = 4JTcMHC 

( 

( 10-2m) l (1.0546 X 10-34 Js) X (6.0221 X 1023 mol-l) X ~ 

= 4rr(2.99S x I08ms- 1) x (O.OOIOOSkgmol 1) x (20.71cm- 1) 

= S.9S6 x 10- 11 m = ls9.S6 pm I 

The values of R calculated with either the rotational constant C or the rotational constant B differ 
slightly. We approximate the bond length as the average of these two. 

(S7.64 + S9.S6) pm Iss I (R)"" 
2 

= .7 pm 

(
10-2m) 

ft (1.0546 X 10-34 J s) X (6.0221 X 1023 mol-l) X ~ 

8 - = -----,-,-,---,-;:----:---,--:--:-:c:-:------,---.-----,--,-::'c---:-'7;;-----;;-
- 2rrcmR2 2rr(2.99S x 108ms-l) x (O.OOIOOSkgmol 1) x (S7.32 x 10-12m)2 

= 143.S7 cm- 1 I 

3 

11lcff Ill 

Sincemo = 2mH, mcrr.o = 2mH/3 
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I 
Since B and C ex -, where m = mass of H or D 

Ill 

B(Dj) = BCHi) x MH = 43.55 em- 1 x ( l.00
8

) = 121.80 em- 1 I 
· Mo 2.014 

C(Dj) = C(Hj) x MH = 20.71 em- 1 x ( l.00
8

) = 110.37 em- 1 I 
· Mo 2.014 
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14 Spectroscopy 2: 
electronic transitions 

Answers to discussion questions 

The Franck-Condon principle states that because electrons are so much lighter than nuclei, an electronic 
transition occurs so rapidly compared to vibrational motions that the internuclear distance is relatively 

unchanged as a result of the transition. This implies that the most probable transitions ur +--- Vi are vertical. 
This vertical line will, however, intersect any number of vibrational levels vr in the upper electronic state. 

Hence transitions to many vibrational states of the excited state will occur with transition probabilities 

proportional to the Frank-Condon factors which are in turn proportional to the overlap integral of the 
wavefunctions of the initial and final vibrational states. A vibrational progression is observed, the shape 

of which is determined by the relative horizontal positions of the two electronic potential energy curves. 
The most probable transitions are those to excited vibrational states with wavefunctions having a large 

amplitude at the internuclear position Re. 

Question. You might check the validity of the assumption that electronic transitions are so much faster 

than vibrational transitions by calculating the time scale of the two kinds of transitions. How much faster 
is the electronic transition, and is the assumption behind the Franck -Condon principle justified? 

Color can arise by emission, absorption, or scattering of electromagnetic radiation by an object. Many 

molecules have electronic transitions that have wavelengths in the visible portion of the electromagnetic 

spectrum. When a substance emits radiation the perceived color of the object will be that of the emitted 
radiation and it may be an additive color resulting from the emission of more than one wavelength 

of radiation. When a substance absorbs radiation its color is determined by the subtraction of those 

wavelengths from white light. For example, absorption of red light results in the object being perceived 
as green. Scattering, including the diffraction that occurs when light falls on a material with a grid of 

variation in texture or refractive index having dimensions comparable to the wavelength of light, for 

example, a bird's plumage, may also form color. 

The characteristics of fluorescence which are consistent with the accepted mechanism are: ( 1) it ceases 
as soon as the source of illumination is removed; (2) the time scale of fluorescence,~ w-9 s, is typical 

of a process in which the rate determining step is a spontaneous radiative transition between states 

of the same multiplicity; slower than a stimulated transition, but faster than phosphorescence; (3) it 
occurs at longer wavelength (higher frequency) than the inducing radiation; (4) its vibrational structure 

is characteristic of that of a transition from the ground vibrational level of the excited electronic state to 

the vibrational levels of the ground electronic state; and (5), the observed shifting and in some instances 

quenching of the fluorescence spectrum by interactions with the solvent. 
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See Table 14.4 for a summary of the characteristics of laser radiation that result in its many advantages for 

chemical and biochemical investigations. Two important applications of lasers in chemistry have been 
to Raman spectroscopy and to the development of time resolved spectroscopy. Prior to the invention 

of lasers the source of intense monochromatic radiation required for Raman spectroscopy was a large 
spiral discharge tube with liquid mercury electrodes. The intense heat generated by the large current 
required to produce the radiation had to be dissipated by clumsy water-cooled jackets and exposures 
of several weeks were sometimes necessary to observe the weaker Raman lines. These problems have 
been eliminated with the introduction of lasers as the source of the required monochromatic radiation. 

As a consequence, Raman spectroscopy has been revitalized and is now almost as routine as infrared 
spectroscopy. See Section 14.6(b). Time resolved laser spectroscopy can be used to study the dynamics 

of chemical reactions. Laser pulses are used to obtain the absorption, emission, and Raman spectrum of 
reactants, intermediates, products, and even transition states of reactions. When we want to study the 

rates at which energy is transferred from one mode to another in a molecule, we need femtosecond and 
picosecond pulses. These time scales are available from mode-locked lasers and their development has 

opened up the possibility of examining the details of chemical reactions at a level that would have been 

unimaginable before. 

Solutions to exercises 

E14.1(b) According to Hund's rule, we expect one lrru electron and one 2rrg electron to be unpaired. Hence S = I 

and the multiplicity of the spectroscopic term is [I]. The overall parity is u x g = 0 since (apart from 
the complete core), one electron occupies au orbital another occupies a g orbital. 

E14.2(b) Use the Beer-Lambert law 

I 
log-= -e[J]/= (-327dm3 mol- 1 em- 1) X (2.22x l0-3 moldm-3) X (0.15em) 

Io 

E14.3(b) 

= -0.10889 

_I_ = 10-o.1oss. = 0.778 
I, 

The reduction in intensity is 122.2 percent \ 

I I 
e =- [J]/Iog 1,; [13.2, 13.3] 

-1 
-----,------.

3
-----log0.655 = 787dm3 mol- 1 em- 1 

(6.67 x w-4 mol dm ) x (0.35 em) 

= 787 X 103 em 3 mol-l em-' [l dm = lOem] 

= 17.9 x 105 em2 mol- 1 I 

E14.4(b) The Beer-Lambert law is 

I -1 I 
[J] =-log-log- = -e[J]I so 

Io 

[J] = 
(323dm3 mol 

e/ Io 

I -l log(! - 0.523) = 11.33 X lQ-3 mol dm-3 1 
em- 1 x (0.750em) 
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E14.5(b) Note: a parabolic lineshape is symmetrical, extending an equal distance on either side of its peak. The 

given data are not consistent with a parabolic lineshape when ploLted as a function of either wavelength 

or wavenumber. for the peak does not fall at the center of either the wavelength or the wavenumber 

range. The exercise will be solved with the given data assuming a triangular lineshape as a function of 

wavenumber. 

The integrated absorption coefficient is the area under an absorption peak 

If the peak is triangular, this area is 

A = ! (base) x (heigh I) 

= ![(199 X w-9m)-l- (275 X w-9 m)- 1] X (2.25 X I04 dm3mol-l cm- 1) 

= 1.56 X 
10 3 -1 -1 _ 1 (1.56x!09 dm3m- 1mol- 1cm- 1)x(100cmm- 1) 

10 dm m mol em = 3 103 dm m 3 

E14.6(b) Modeling the 7r electrons of I ,3,5-hexatriene as free electrons in a linear box yields non-degenerate 

energy levels of 

The molecule has six rr electrons, so the lowest-energy transition is from n = 3 ton = 4. The length of 

the box is 5 times the C-c bond distance R. So 

Modelling the rr electrons of benzene as free electrons on a ring of radius R yields energy levels of 

where I is the moment of inertia: I = mcR2. These energy levels are doubly degenerate, except for the 

non-degenerate 1111 = 0. The six rr electrons fill the 1111 = 0 and I levels, so the lowest-energy transition 

is from 1111 = I to m1 = 2 

(22 - 12)1i2 

6Ering = 2 R'"' 
lllc -

Comparing the two shows 

7 ( ,, ) 6£· -- -
hncar - 25 8mcR2 

(22 - 12)112 

8rr 2mcR2 

3 ( ,, ) 
< 6£ring = ----:;- -

8 
R' 

rr- me 

Therefore, the lowest-energy absorption will I rise I in energy. 



E14.7(b) The Beer-Lambert law is 

I 
log- = -E[J]/ = log T 

Io 
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so a plot (Figure 14.1) of log T versus [J] should give a straight line through the origin with a slope m 

of -EI. So E = -m/1. 

The daLa follow 

[dye]/(mol dm-3 ) T logT 

0.0010 0.73 -0.1367 

0.0050 0.21 -0.6778 

0.0100 0.042 -1.3768 

0.0500 1.33 x w-' -6.8761 

0 --~~~~~~--~~~~~-. 

•~;~ ~~~ci~-Ir'.t13! 6o; • 
-2 

h 
_2-4 

-6 

-8 

. ' .. ~- ' . . .. - .............. . 

.... : ..... :··· .............. . 
..... ; 

0.00 0.0 I 0.02 0.03 0.04 0.05 0.06 

[dycJI(mol dm-3
) Figure 14.1 

The molar absorptivity is 

E= 
-138dm3 mol- 1 

0.250cm 

E14.B(b) The Becr-Lamben law is 

log T = -E[l]l 
-I 

so E = [J]/IogT 

E= -I log0.32 = l128dm3 mol-l cm- 1 I 
(0.0155moldm 3) x (0.250cm) 

Now that we have c, we can compute T of this solution with any size of cell 

T = 10-~:[J]/ = to-IC1i8dm3 mol- 1 cm- 1 )x(O.Ol55moldm-3)x(0.450cm)] = [Iill 
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E14.9(b) The Beer-Lambert law is 

I 
log- = -e[J]I so 

Io 

I I 
1=--log-

e[J] Io 

(a) I= ---,---....---,.--------
3
""" x log~ =I O.OIOcm I 

(30dm3 mol 1 cm- 1) x (I.Omoldm ·) 2 

(b) I = -
3 

x log 0.1 0 = I 0.033 em I 
(30dm3 mol 1 cm- 1) x (I.Omoldm ) 

E14.10(b) The integrated absorption coefficient is the area under an absorption peak 

A= j edv 

We are told that e is a Gaussian function, i.e. a function of the form 

(-x2) 
e = Emax. exp 

02 

where x = V - Vmax and a is a parameter related ro the width of the peak. The integrated absorption 

coefficient, then, is 

f oo (-x2) 
A = -oo Emax exp ---;;2 

We must relate a to the half-width at half-height, XJ/2 

( ' ) I -X[j2 
')Emax = Emax exp --,-
- a-

so 
' In 1 - -XJ;2 

2-
0

2 and 
X]j2 

a=--
.jjn2 

So A = CmaxXJf2 (--"-) 
112 

= (1.54 x 104 dm 3 mol- 1 em -I) x (4233 em -I) x (--"-) 
112 

ln2 ~2 

= 11.39 x 108 dml mol- 1 cm-2 1 

In SI base units 

(1.39 x 108 dm3 mol- 1 cm-2 ) x (1000cm3 dm-3 ) 

A=~~------~IO~O~c~m~m~1~-----~~~ 

= 11.39 x 109 m mol- 1 I 

E14.11 (b) F~ is formed when F2 loses an anti bonding electron, so we would expect FI to have a shorter bond than 

F2. The difference in equilibrium bond length between rhe ground state (F2) and excited state (F;i +e-) 
of the photoionization experiment leads us to expect some vibrational excitation in the upper state. The 

vertical transition of rhe photoionization will leave the molecular ion with a stretched bond relative to 
its equilibrium bond length. A stretched bond means a vibrationally excited molecular ion, hence a 

I stronger I transition to a vibrationally excited state than to the vibrational ground state of the cation. 
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Solutions to problems 

Solutions to numerical problems 

The energy of the dissociation products of the B state, ocJP) and 0( 1 D) above the v = 0 state of the 
ground state is 7760 cm- 1 + 49 363 cm- 1 =57 123 cm- 1. One of these products, 0( 1 D), has energy 
15 870 cm- 1 above the energy of the ground-state atom, oeP). Hence, the energy of two ground-state 

atoms, zoeP) above the v = 0 state of the ground electronic state is 57 123 em -t - 15 870 cm- 1 = 
41 253 cm- 1 = 15.1147 eV 1. These energy relations are indicated {not to scale) in Figure 14.2 of the 
Instructor's Solwions Manual. 

We write e = £maxe-x
2 

= £maxe-i'
2

/
2 r the variable being i.i and r being a constant. i.i is measured 

from the band center, at which i.i = 0, e = !smax when ii2 = 2T In 2. Therefore, the width at half 

height is 

t.v 112 =2 x (2Tin2) 1i 2, implying that 

Now we carry out the integration 

_, 
t. "itz r=--
8Jn2 

- -i:ij2f - 1/2 J 1
00 

A= sdv = Emax -00 e dv = Emax(2Trr) 

( 
-2 )1/2 2rr.6.v 112 rr 1/2 _ _ 

= Emax = (--) Emax.b..VJ/2 = 1.0645Emax.6.VJf2 
81n2 41n2 

From Figure 14.50 of the text we estimate Emax :=:::: 9.5 dm3 mol-l cm- 1 and .6. V 1/2 :=:::: 4760 cm- 1. Then 

The area under the curve on the printed page is about 1288 mm2, each mm2 corresponds to about 
190.5 cm- 1 x 0.189 dm3 moi- 1 cm- 1, and so J edv "" 4.64 x 104 dm3 mol-' cm-2 The agreement 

with the calculated value above is good. 

For a photon to induce a spectroscopic transition, the transition moment {p.,) must be nonzero. The 

Laporte selection rule forbids transitions that involve no change in parity. So transitions to the nu states 
are forbidden. (Note, these states may not even be reached by a vibronic transition, for these molecules 

have only one vibrational mode and it is centrosymmetric.) 

We will judge transitions to the other states with the assistance of the Dooh character table. The transition 

moment is the integral J t/Jf JLt/li dr, where the dipole moment operator has components proportional to 
the Cartesian coordinates. The integral vanishes unless the integrand, or at least some part of it, belongs to 

the totally symmetric representation of the molecule's point group. To find the character of the integrand, 

we multiply together the characters of its factors. Note that the fJ.z has the same symmetry species as 
the ground state, namely A 1 u. and the product of the ground state and fJ.: has the A1g symmetry species; 

since the symmetry species are mutually orthogonal, only a state with ~lg symmetry can be reached 
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from the ground state with z-polarized lighl. The 2 'Ei state is such a state, so 1 2 'Ei +--- 2L~ is allowed.~ 
That leaves X- or y-polarized transitions to the 2 ng states to consider. 

E ooc; 2Cq, 0<:)(7, 2Sq, 

~;t-(Aiu) I -I -I I -I 

1-L.r or y (Etu) 2 0 2cos¢ -2 0 2cos¢ 

ng(Eig) 2 0 2cos¢ 2 0 -2cos¢ 
Integrand 4 0 4 cos2 ¢ 4 0 4 cos2 ¢ 

The little orthogonality theorem (see the solution to Problem 12.18) gives the coefficient of A1g in the 
integrand as 

' ' 
cA,, = (1/h)~cg(C)x(C) = [4 + 0 + 2(4cos- ¢) + 4 + 0 + 2(4cos- ¢)]/oo = 0. 

So the integrand does not contain Alg• and the I transition to 2 ng would be forbidden. I 

The weak absorption at 30000 em -l is typical of a carbonyl group. The strong C=C absorption, which 

typically occurs at about ISO nm, has been shifted to longer wavelength (213 nm) because of the double 
bond and the CO group. 

The ratio of the transition probabilities of spontaneous emission to stimulated emission at a frequency 

vis given by 

(
8rrhv

3
) k c A= --

3
- 8[13.11]= 3 s, wherekisaconstantandwehavev= -. 

c A A 

Thus at 400 nm 

A(400) = (
4
;0)3 8(400), and at 500 nm A(500) = (5~)3 8(500) 

A(500) ((400)
3

) (8(500)) ( 64) 5 6 
Then, A(400) = (500)3 x 8(400) = 125 x IO- = 5 x IO-

Lifetimes and half-lives are inversely proportional to transition probabilities (rate constants) and hence 

The laser is delivering photons of energy 

he (6.626 x I0-34 Js) x (2.998 x I08 ms- 1) 19 E = hv = - = = 4.07 x 10- J 
A 488x 10 9 m 

Since the laser is putting out 1.0 mJ of these photons every second, the rate of photon emisssion is: 

l.Oxi0-3Js-l 15-1 
r = -4,.-.0;::7:-x-:1--;;0---,;19;-J;-- = 2.5 x 10 s 
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The time it takes the laser to deliver 106 photons (and therefore the time the dye remains fluorescent) is 

I~ 
I= =14x JO-IOsor0.4nsl! 

2.5 x I0 15 s 1 · · 

Solutions to theoretical problems 

(a) Ethene (ethylene) belongs to D2h· In this group the x, y, and z components of the dipole moment 

transform as B3u. B2u, and B 1 u respectively. (See a more extensive set of character tables than in 
the text.) The 1r orbital is Btu (like z, the axis perpendicular to the plane) and rr* is B3g· Since 

B3g x B lu = Bzu and B2u x B2u =At g. the transition is I allowed I (and is y-polarized). 

(b) Regard the CO group with its attached groups as locally Cz,. The dipole moment has components that 

transform as At (z), 81 (x), and B2(y), with the z-axis along the C=O direction andx perpendicular to 

the RzCO plane. Then orbital is Py (in the R2CO plane), and hence transforms as 82. The rr* orbital 
ispx; (perpendicular to the R2CO plane), and hence transforms as 81. Since rr X ri = 81 X 82 = A2. 

but no component of the dipole moment transforms as A2, the transition is\ forbidden !. 

f [ /i J I/' 
From Problem 9.15, !LIO = -e 1/IJX1/Iodx = -e 11, 

2(m,k) -

Srr
2
m,v e

2
n W[ (k)'l'] Hence, f = x = - 2rrv = -

3he2 2(mck) 112 3 me 

(a) Vibrational energy spacings of the ! lower ! state are determined by the spacing of the peaks of A. 

From the spectrum, ii ::::::: 1800 em -I. 

(b) Nothing can be said about the spacing of the upper state levels (without a detailed analysis of the 

intensities of the lines). For the second part of the question, we note that after some vibrational 
decay the benzophenone (which does absorb near 360 nm) can transfer its energy to naphthalene. 

The latter then emits the energy radiatively. 

(a) The Beer-Lambert Law is: 

Io 
A = log I = s[J]/. 

The absorbed intensity is: 

labs = lo -/ so I = lo -labs· 

Substitute this expression into the Beer-Lambert law and solve for labs: 

log lo = s[J]I so lo -i,b, = lo X 10-o(J]I, 
lo -labs 

and i,b, = h X (I - w-,IJII) 1-
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(b) The problem states that lr(vr) is proportional to <Pr and to l,b,(v), so: 

fr(vr) ex ¢rlo(v) x (I - IO'Il 11 ). 

If the exponent is small, we can expand I - IQ-dJ]/ in a power series: 

10-'IJII = (el" 10)-o[JJI"" I - £[1]/ln 10 +. 

and fr(vr) ex I <Prlo(v)£[1]/ln 10 I 

Solutions to applications 

There are three isosbestic wavelengths (wavenumbers). The presence of two or more isosbestic poims is 
good evidence that only two solutes in equilibrium with each other are present. The solutes here being 
Her(CNS)s and Her(OH)s. 

The following table summarizes AMI calculations (an extended HUcke! method) of the LUMO
HOMO separation in the II~cis and 11-Trans molecule (7) model of retinal. The -46.0° torsional 
angle between the first two alternate double bonds indicates that they are not coplanar. In contrast, 
the CIICI2CI3CI4 torsion angle shows that the Cl ICI2 double bond is close to coplanar with 
neighboring double bonds. The aromatic character of the alternating rr-bond system is evidenced by 
contrasting the computed bond lengths at a single bond away from then-system (Cl-c2), a double 
bond (Cil--cl2), and a single bond between doubles (CI2--cl3) within the Lewis structure. We 
see a typical single bond length, a slightly elongated double bond length, and a bond length that 
is intermediate between a single and a double, respectively. The latter lengths are characteristic of 
aromaticity. 

Conformation 11-trans (5) 11-cis (5) 

L'>rH9 /k1mol- 1 725.07 738.1 

EwMo/eV -5.142 -5.138 

EHoMo/eV -10.770 -10.888 
I'>.E/eV (a) 5.628 (b) 5.750 

A/nm (a) 220.3 (b) 215.6 
C5C6C7C8 torsion angle/0 -44.5 -46.0 
C II C 12C 13C 14 torsion angle/0 179.7 -165.5 
CI--c2/pm 153.2 153.2 
Cll--cl2/pm 137.3 136.7 
CJ2--ci3/pm 1.420 1.421 

(c) The lowest n* +--- n transition occurs in the ultraviolet with the I l-eis transition at higher energy 
(higher frequency, lower wavelength). It is apparent that important interactions between retinal and 
a surrounding opsin molecule are responsible for reducing the transition energy to the observed 
strong absorption in the 400 to 600 nm visible range. 
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Cll 

HOMO LUMO 

Figure 14.2 

The concentration of the hypothetical pure layer is 

n p I atm 2 3 
[OJ]=-=-= =4.46 X w- moldm-v RT (0.08206dm3 atmmol 1 K- 1) x (273K) 

So for300 DU 

A=ecl= (476dm3 mol- 1cm- 1) X (0.300cm) X (4.46x w-2 moldm-3
) =16.371 

and for 100 DU 

A =eel= (476 dm 3 mol-l cm- 1) X (O.IOOcm) X (4.46 X w-2 mol dm-3) = [Iill 

The reaction enthalpy for process (2) is 

t>rH" (CI20 2) = ( 121.68 + 1096 + 0) kJ mol- 1 - (10.95 eV) x (96.485 kJ ev- 1) 

= 161 kJ mol- 1 

We see that the Cl202 in process (2) is different from that in process (1), for its heat of formation is 

lzs kJ mol- 1 I greater. This is consistent with the computations, which say that CIOOCI is likely to be 
the lowest-energy isomer. Experimentally we see that the CbOz of process (2), which is not CIOOCI, 

is not very much greater in energy than the lowest-energy isomer. 
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15 Spectroscopy 3: magnetic 
resonance 

Answers to discussion questions 

Before the application of a pulse the magnetization vector, M, points along the direction of the static 

external magnetic field !lao. There are more a spins than {J spins. When we apply a rotating magnetic 

field &11 at right angles to the static field, the magnetization vector as seen in the rotating frame begins 
to precess about the .@'J field with angular frequency WJ = y86'1. The angle through which M rotates is 

B = y.9ii,l, where 1 is the time for which the &1, pulse is applied. When 1 = rrj2y&!,,B = rr/2 = 90', 
and M has rotated into the xy plane. Now there are equal numbers of a and fJ spins. A 180° pulse applied 

for a time rrjyffa1, rotates M antiparallel to the static field. Now there are more fJ spins than a spins. A 

population inversion has occurred. 

The basic COSY experiment uses the simplest of all two-dimensional pulse sequences: a single goo 
pulse to excite the spins at the end of the preparation period, and a mixing period containing just a 

second 90' pulse (see Figure 15.46 of the text). 

The key to the COSY technique is the effect of the second goo pulse, which can be illustrated by consid

eration of the four energy levels of an AX system (as shown in Figure 15.12). At thermal equilibrium, 

the population of the a A aX level is the greatest, and that of f3A {3X level is rhe smallest; the other two 
levels have the same energy and an intermediate population. After the first goo pulse, the spins are no 

longer at thermal equilibrium. If a second goo pulse is applied at a time 11 that is short compared to the 
spin-lattice relaxation time 7 1 the extra input of energy causes further changes in the populations of 

the four states. The changes in populations will depend on how far the individual magnetizations have 

precessed during the evolution period. 

For simplicity, let us consider a COSY experiment in which the second goo pulse is split into two 

selective pulses, one applied to X and one to A. Depending on the evolution time 11, the goo pulse that 

excites X may leave the population differences across each of the two X transitions unchanged, inverted, 
or somewhere in between. Consider the extreme case in which one population difference is inverted and 

the other unchanged (Figure 15.50). The 90° pulse that excites A will now generate an FID in which 
one of the two A transitions has increased in intensity, and the other has decreased. The overall effect is 

that precession of the X spins during the evolution period determines the amplitudes of the signals from 

the A spins obtained during the detection period. As the evolution time /1 is increased, the intensities of 
the signals from A spins oscillate at rates determined by the frequencies of the two X transitions. 

This transfer of information between spins is at the heart of two-dimensional NMR spectroscopy and 

leads to the correlation of different signals in a spectrum. In this case, information transfer tells us 



015.6 

SPECTROSCOPY 3: MAGNETIC RESONANCE 279 

that there is a scalar coupling between A and X. If we conduct a series of experiments in which 11 

is incremented, Fourier transformation of the FIDs on 12 yields a set of spectra /(vi, v2) in which the 
A signal amplitudes oscillate as a function of IJ. A second Fourier transformation, this time on lt. 

converts these oscillations into a two~dimensional spectrum l(VJ, v2). The signals are spread out in v, 

according to their precession frequencies during the detection period. Thus, if we apply the COSY 
pulse sequence to our AX spin system (Figure 15.46), the result is a two-dimensional spectrum that 

contains four groups of signals centered on the two chemical shifts in lJt and v2. Each group will show 
fine structure, consisting of a block of four signals separated by lAX· The diagonal peaks are signals 
centered on (c5Ac5A) and (c5xc5x) and lie along the diagonal VJ = v2. They arise from signals that did not 

change chemical shift between t1 and 12. The cross peaks (or off-diagonal peaks) are signals centered 

on (c5Ac5x) and (c5xc5A) and owe their existence to the coupling between A and X. Consequently, cross 
peaks in COSY spectra allow us to map the couplings between spins and to trace out the bonding 
network in complex molecules. Figure 15.52 shows a simple example of a proton COSY spectrum of 

isoleucine. 

The ESR spectra of a spin probe, such as the di-terr-butyl nitroxide radical, broadens with restricted 

motion of the probe. This suggests that the width of spectral lines may correlate with the depth to which a 
probe may enter into a biopolymer crevice. Deep crevices are expected to severely restrict probe motion 

and broaden the spectral lines. Additionally, the splitting and center of ESR spectra of an oriented sample 
can provide information about the shape of the biopolymer-probe environment because the probe ESR 

signal is anisotropic and depends upon the orientation of the probe with the external magnetic field. 
Oriented biopolymers occur in lipid membranes and in muscle fibers. 

Solutions to exercises 

E15.1(b) For 19 F, !'__ = 2.62835, g = 5.2567 
!LN 

E15.2(b) 

y.9J 8/!LN 
v = VL = - with y = --

2rr n 

gr!LN·.9J 
Hence v = --- = . h 

11lf = 1,0,-1 

(5.2567) X (5.0508 X 10-27 Jr 1) X (16.2T) 

(6.626 x 10 34 J s) 

E,, = -(0.404) x (5.0508 x 10-27 JT- 1) X (11.50T)mr 

= - ( 2.3466 x w-26 J) m, 
1-2.35 x w-26 J, o, +2.35 x w-26 J I 
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E15.3(b) The energy separation between the two levels is 

yfE (1.93 X 107 r 1 s- 1) X (15.4T) 
6.£ = hv where v = - = -'--------'------'---"-

2rr 2rr 

= 4. 73 x 10 7 s -I = rl4c::7c:.3-:cM-:cH:c::z-,l 

E15.4(b) A 600 MHz NMR spectrometer means 600 MHz is the resonance field for protons for which the magnetic 

field is 14.1 T as shown in Exercise 15.l(a). In high-field NMR it is the field not the frequency that is 

fixed. 

E15.5(b) 

(a) A 14N nucleus has three energy states in a magnetic field corresponding to mr = +1,0, -I. But 

6.£(+1-> 0) = 6.£(0-> -1) 

The allowed transitions correspond to 6. 1111 = ± 1; hence 

6,£ = hv = yli.'ft = 8JILNfE = (0.4036) X (5.051 X 10-27JT-l) X (J4.1T) 

= 12.88 x w-26 J I 
(b) We assume that the electron g-value in the radical is equal to the free electron g-value, ge == 20023. 

Then 

6.£ = hv = 8dLBfE (37] = (2.0023) X (9.274 X 10-24 Jr 1) X (0.300T) 

= 15.57 x w-24 J I 

COMMENT. The energy level separation for the electron in a free radical in an ESR spectrometer is far greater 

than that of nuclei in an NMR spectrometer, despite the fact that NMR spectrometers normally operate at 

much higher magnetic fields. 

6.£ = hv = yTii$ = 81!'NfE [Solution to Exercise 15.l(a)] 

hv (6.626xi0-34 JHz- 1)x(l50.0xl06 Hz) I I 
Hence, fE = -- = = 3.523 T 

81 !'N (5.586) X (5.051 X 10 27 J T I) 

E15.6(b) In all cases the selection rule l'>mt =±I is applied; hence (Exercise 15.4{b)(a)) 

hv 6.626 x 10-34 J Hz- 1 v 
B = 8-1-!'-N = -=5-=.o-::5708:::'--x:..:l:-:o:-;;2~7 J::T::-;-1 x g; 

= (1.3119 X 10-7 ) x (~J T = {0.13119) X (~) T 
81 81 
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We can draw up the following table 

fdJjT 14N 19F 31p 

81 0.40356 5.2567 2.2634 

(a) 300MHz 97.5 7.49 17.4 
(b) 750MHz 244 18.7 43.5 

COMMENT. Magnetic fields above 20 T have not yet been obtained for use in NMR spectrometers. As 

discussed in the solution to Exercise 15.4(b), it is the field, not the frequency, that is fixed in high-field NMR 

spectrometers. Thus an NMR spectrometer that is called a 300 MHz spectrometer refers to the resonance 

frequency for protons and has a magnetic field fixed at 7.05 T. 

E15.7(b) The relative population difference for spin -! nuclei is given by 

8N Na - N~ yhfdJ 81Jl.NfdJ . . - = "' -- = --- [Juslijica/1011 15.1] 
N Na +N~ 2kT 2kT 

1.405 (5.05 x w-27Jr') fdJ 
-::-;:-::~--:-:::-:;:;-:-:-:-;-;--...,.:-;c::::;:- = 8.62 X 10-7 ( fj(J jT) 
2 ( 1.381 x 10 23] K I) x (298 K) 

(a) For 0.50T 
8
: = (8.62 x w-7

) x (0.50) = 14.3 x w-'1 
(b) For 2.5 T 

8
: = (8.62 X 10-7

) X (2.5) = 12.2 X 10-6 1 

(c) For 15.5T 
8
: = (8.62 X 10-7

) X (15.5) = 11.34 X 10-5 1 

E15.8(b) The ground state has 

1 . 
mt = + 2 = a spm, 

Hence, with 

8N =Na-N~ 

1 . 
m1 = - 2 =f3spm 

Na - Nae-t::..lifkT 

Na + Nae t:.E/kT 
[Juslificalioll 15.1] 

I - e-M/kT 1- (1 - b.EjkT) 6.£ 81Jl.NfdJ 
.,.-------,-,= "' "' - - -- [for 6.£ « kT] 
1 + e MfkT I + 1 2kT - 2kT 

N8JJl.N·qa Nhv 
8N= =-

2kT 2kT 

Thus, 8N oc v 

8N (800 MHz) = (800 MHz) = (ITI 
8N(60 MHz) (60 MHz) 
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This ratio is not dependent on the nuclide as long as lhe approximation b.£ << kT holds. 
v- V

0 

(a) IJ = -- x 106 [15.8] 
vo 

Since both v and v0 depend upon the magnetic field in the same manner, namely 

8/f.'NQ! 81f.'NY!o . 
v = --- and v0 = [ExerCISe 15.1 (a)] 

h h 

8 is I independent I of both g;g and v. 

(b) Rearranging [15.18], v- v0 = v0 8 x w-6 and we see that the relative chemical shift is 

v - v0 (800 MHz) = (800 MHz) =[IT] 
v - v0 (60 MHz) (60 MHz) 

COMMENT. This direct proportionality between v- v0 and v0 is one of the major reasons for operating an 

NMR spectrometer at the highest frequencies possible. 

Y!too = (I - ") .9! 

IL'.Y!tocl = I(L'.a)IYJ"" 1[/J(CH,)- IJ(CH2)liYJ 

= 11.16-3.361 X I0-6QJ = 2.20 X I0-6QJ 

(a) QJ = 1.9T, IL'.Y!tod = (2.20 X 10-6
) X (1.9T) = 14.2 X w-6 T I 

(b) QJ = 16.5 T, I L'.Y!toc I = (2.20 X w-6
) X (I 6.5 T) = 13.63 X w-s T I 

II'. vi= (v- v0 )(CH2)- (v- v0 )(CH3) = v(CH2)- v(CH3) 

= v0 [/J(CH2)- IJ(CH,)] X w-6 

= (3.36- 1.16) X IQ-6 v0 = 2.20 X I0-6 v0 

(a) V
0 = 350MHz II'. vi= (2.20 X w-6

) X (350MHz) =770Hz [Figure 15.1] 

(b) v0 = 650MHz II'. vi= (2.20 X w-6
) X (650MHz) =!.43kHz 

J ~ 6.97Hz ]~'""" 
770Hz 

at 350M Hz Figure 15.1 

Ar 650 MHz, the spin-spin splitting remains the same at 6.97 Hz, but as f:l. v has increased to I .43kHz, 
the splitting appears narrower on the 0 scale. 
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E15.11 (b) The difference in resonance frequencies is 

E15.12(b) 

t>v = (v0 x 10-6
) 6{, = (350s-') x (6.8- 5.5) = 4.6 x 102 s- 1 

The signals will be resolvable as long as the conformations have lifetimes greater than 

The interconversion rate is the reciprocal of the lifetime, so a resolvable signal requires an inter

conversion rate less than 

rate= (2rr6o)=2rr (4.6x I02 s-') =12.9 x 103 s-'l 

81fl.N·'18 . . 
v = --- [Solution to exerciSe 15.l(a)] 

" 
v(31 P) g(' 1P) 

Hence. v(' H) = g(' H) 

2.2634 
or v(31 P) = 

5
_
5857 

x 500 MHz = 1203 MHz I 

The proton resonance consists of 2 lines ( 2 x ~ + I) and the 31 P resonance of 5 lines 

[ 2 x ( 4 x ~) + 1]. The intensities are in the ratio 1:4:6:4: I (Pascal's triangle for four equivalent 

spin! nuclei, Section 15.6). The lines are spaced~:~:~: = 2.47 times greater in the phosphorus region 

than the proton region. The spectrum is sketched in Figure 15.2. 

Proton 
resonance 

Phosphorus 
resonance 

Figure 15.2 

E15.13(b) Look first at A and M, since they have the largest splitting. The A resonance will be split into a widely 

spaced triplet (by the two M protons); each peak of that triplet will be split into a less widely spaced 
sextet (by the five X protons). The M resonance will be split into a widely spaced triplet (by the two 

A protons); each peak of that triplet will be split into a narrowly spaced sextet (by the five X protons). 
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A2M2Xs 

A protons 

(b) 

JAM> JAX > JMx 

M protons X prOlons 

---i -lAx 

1 I 

Figure 15.3 

The X resonance will be split into a less widely spaced triplet (by the two A protons); each peak of that 
triplet will be split into a narrowly spaced triplet (by the two M protons). (See Figure 15.3.) 

Only the splitting of the central peak of Figure 15.3(a) is shown in Figure 15.3(b). 

E15.14(b) (a) Since all lHF are equal in this molecule (the CH2 group is perpendicular to the CF2 group), the H 
and F nuclei are both chemically and magnetically equivalent. 

(b) Rapid rotation of the PH3 groups about the Mo-P axes makes the P and H nuclei chemically and 
magnetically equivalent in both the cis- and trans-forms. 

E15.15(b) Precession in the rotating frame follows 

E15.16(b) 

y@l 
VL = -- Of W] = y&b"1 2rr 

Since w is an angular frequency, the angle through which the magnetization vector rotates is 

8IJ1.N 
8 = y&?1r = --&?1r 

h 

8/i (rr)x(I.0546xi0-34 Js) I I 
So &?1 = -- = 

27 1 6 
= 9.40 x 10-4 T 

8/Jl.NI (5.586) X (5.0508 X 10 JT ) X (12.5 X 10 S) · · 

a 90° pulse requires ~ x 12.51J.S = 16.25 IJ.S I 

hv he 
9?=--=--

8ef.LB gcP,sA 

(6.626 x I0-34 Js) x (2.998 X 108 ms- 1) ~3 - -~ - (2) X (9.274 X 10 24 JT I) X (8 X 103m)- . 

E15.17(b) The g factor is given by 

hv h 
g---· 

- Jl.s&?' Jl.B 

6.62608 X 10-34 J S 
::-'::':-:c:'-'--:-::--;;c;-:-::=;- = 7.1448 x 10- 11 THz- 1 = 71.448mTGHz- 1 
9.2740 X 10 24 JT 1 

71.448mTGHz-l x 9.2482GHz I I 
g = = 2.0022 

330.02mT 
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E15.18{b) The hyperfine coupling constant for each proton is 12.2 mT I. the difference between adjacent lines in 

the spectrum. The g value is given by 

hv (71.448 mT GHz- 1) x (9.332 GHz) ,..-;;;;::;-] 
g=--= =~ 

JLn:Yl 334.7 mT 

E15.19(b) If the spectrometer has sufficient resolution, it will see a signal split into eight equal parts at± 1.445 ± 
1.435 ± 1.055 mT from the center, namely 

/328.865, 330.975, 331.735, 331.755, 333.845, 333.865, 334.625, and 336.735 mT / 

If the spectrometer can only resolve to the nearest 0.1 mT, then the spectrum will appear as a sextet with 
intensity ratios of 1: I :2:2: I: I. The four central peaks of the more highly resolved spectrum would be 

the two central peaks of the less resolved spectrum. 

E15.20(b) (a) If the CH2 protons have the larger splitting there will be a triplet (1:2:1) of quartets (1:3:3:1). 
Altogether there will be 12 lines with relative intensities 1(41ines), 2(2 lines). 3(4 lines), and 6(2 
lines). Their positions in the spectrum will be determined by the magnitudes of the two proton 
splittings which are nm given. 

(b) If the C02 deuterons have the larger splitting there will be a quintet (1:2:3:2:1) of septets 
(1:3:6:7:6:3:1). Altogether there will be 35 lines with relative intensities 1(4 lines), 2(4 lines). 
3(61ines), 6(81ines), 7(21ines), 9(21ines), 12(4lines), 14(21ines), 18(21ines),and 2l(lline). Their 
positions in the spectrum will determined by the magnitude of the two deuteron splittings which are 
not given. 

E15.21(b) The hyperfine coupling constant for each proton is [2.2 mT [, the difference between adjacent lines in 

the spectrum. The g value is given by 

h u l!u 
g = -- so !18 = --

JLB.'iil !lsg' 

II I - = 71.448mTGHz-
llB 

(71.448mTGHz- 1
) x (9.312GHz) I I 

(a) :111 = 2.0024 - . 332.3 mT . 

(71.448 mTGHz- 1) x (33.88GHz) 
:111 = II209mTI 

2.0024 
(b) 

E15.22(b) Two nuclei of spin I I= I I give five lines in the intensity ratio I :2:3:2: I (Figure 15.4). 

I 
I I I First nucleus with I= 1 

II Ill II second nucleus with I= 1 

2 3 2 Figure 15.4 

E15.23(b) The X nucleus produces four lines of equal intensity. Three H nuclei split each into a I :3:3:1 quartet. The 
three D nuclei split each line into a septet with relative intensities I :3:6:7:6:3:1 (see Exercise 15.20(a)). 

(See Figure 15.5.) 
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xo, II Figure 15.5 

Solutions to problems 

Solutions to numerical problems 

P15.2 I I 
TJ "" -- = -,-:---c--,.--c-:----c--,----:-:c---,c-~-:---,-;--:-::--c 

2rr8v (2rr) X ((5.2-4.0) X IQ 6) X (60 X IQ6Hz) 

~ 2.2 ms, corresponding to a jump rate of 450 s- 1• 

When v = 300 MHz 

I 
TJ "" ( I ( = 0.44 ms (2rr) X (5.2- 4.0) X IQ 6 X 3QQ X IQ6 Hz) 

corresponding to a jump rate of 2.3 x 103 s- 1. Assume an Arrhenius-like jumping process (Chapter 22) 

rate ex: e-Ea/RT 

Then, In [rate(T')] = -E, (~ _ -'-) 
rate(T) R T' T 

Rln(r'fr) 8.3141 K-' mol-t 
and therefore Ea = I 

1 
= 

2.3 X 103 

x In 450 
=157klmol- 1 1 

T T' 280K 300K 

P15.4 The three rotational conformations of F2BrC-CBrCI2 are shown in Figure 15.6. In conformation I. 
the two F atoms are equivalent. However, in conformations II and III they are non-equivalent. At 

low temperature, the molecular residence time in conformation I is longer (because this conformation 
has the lowest repulsive energy of the large bromine atoms) than that of conformations II and Ill, which 

have equal residence times. With its longer residence time, we expect that the NMR signal intensity 

of conformation I should be stronger and we can conclude that it is the low-tempermure singlet. It is a 
singlet because equivalent atoms do not have detectable spin-spin couplings. 

Br 

F~F 

C\ ~ Cl ~ 
Br 
I 

Cl Cl 

F~F F~F 

Br~ Cl~ Cl ~Br 
Br 
II 

Br 
Ill Figure 15.6 
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The Huorines of conformations II and Ill are non-equivalent, so their coupling is observed at low

temperature. Fluorine has a nuclear spin of 1/2. so we expect a doublet for each fluorine. These are 

observed with strong geminal coupling of 160Hz. As temperature increases, the rate of rotation between 

II and III increases and the two fluorines become equivalent in these conformations, though remaining 

distinct from I. The doublers collapse to singlets. With a further temperaLUre increase to -30 °C, and 
above, the rate of rotation about the c---c bond becomes so rapid that the residence times of the three 

conformations become equal. The very short residence times produce an average NMR signal thm is a 
singlet and the ftuorines appear totally equivalent. 

The spectra shown in Figure 15.63 of the text for conformations II and III show both spin-spin coupling 

and differences in chemical shift The spin-spin splilting is 160Hz. The difference in chemical shift can 

be estimated from the separation between the doublet centers, 6 

6. = (1' + ov') 1/2 

6. is estimated from the figure to be 210 Hz. This yields for Ov, the chemical shift, 

81.! = (.6.2 -f!.)l/'1 

= (2102 - 1602) 112 Hz"' 140Hz 

Collapse to a single line will occur when the rate of interconversion satisfies 

I rr 6. k"'-"'- [15.29] 
T .j'j_ 

rr x 200s-
1 I I 

k = .J2 "' L4_x_I_0_
2 

_s -_I__J 

The relative intensities,/, of the lines at -80°C can be used to estimate the energy difference (Eu- £ 1) 

between conformation I and conformations II and III. We assume that the relative intensities of the 

lines are proportional to the populations of conformers and that these populations follow the Boltzmann 

distribution (Chapters 2 and 16). Then 

I, 

In 

En- £1 = RT In(!!._) = 8.3141 K- 1 mol- 1 x (273- 80) KIn( 10) 
In 

= 3.7 x 103 J mol- 1 = 13.7 kJ mol- 1 I 

This energy difference is not, however, the rotational energy barrier between the rotational isomers. 

The latter can be estimated from the rate of interconversion between the isomers as a function of 

temperature. That rate of interconversion is roughly 4 x 102 s- 1 at -30°C. At -60°C, as estimated 

from the line width at that temperature [ 13.19], it is roughly 1/3 of that value, or """ 1.3 x 102 s- 1. 

Assuming that the rate of interconversion satisfies an Arrhenius type of behavior, k ex e-E,fRT, where 

E" is the rotational energy barrier, 
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R In 3 4 _ 1 1 _ 1 1 

E, =(-I- __ l_) = 1.6 x 10 Jmol = l6kJ mol 

213K 243K 

This value is typical of the rotational barriers observed in compounds of this kind. 

P15.6 (a) The Karp ius equation [ 15.27] for 3 lHH is a linear equation in cos¢ and cos 2¢. The experimentally 

P15.8 

determined equation for 3 lsnSn is a linear equation in 3 lHH· In general, if F(j) is linear inf, and if 
j(x) is linear in x, then F(x) is linear. So we expect 3 lsnsn to be linear in cos fjJ and cos 2¢. This is 
demonstrated in (b). 

(b) 3 15, 5,/Hz = 78.86e lHH/Hz) + 27.84 

Inserting the Karp ius equation for 3 lHH we obtain 
3Js,s,/Hz = 78.86[A +Bcos¢ + Ccos2¢] +27.84. Using A= 7,B = -l, and C = 5, we obtain 

3 lsnsn/Hz = j580- 79 cos¢+ 395 cos 2¢ I 

The plot of 3 JsnSn is shown in Figure 15.7. 

Vicinal lin coupling constant 
1200 .-------'---------, 

1000 

800 

N 
:r: .., 

600 J 
400 

200 

30 60 90 120 150 180 
¢/degrees Figure 15.7 

(c) A staggered configuration (Figure 15.8) with the SnMe3 groups trans to each other is the preferred 
configuration. The SnMe3 repulsions are then at a minimum. 

/w (7.14478 X 10- 11 T) X (v/Hz) 
g = -- [ 15 .40] = .:.._ ___ -,::----'--'-'----'-

P,B·9Jo .9Jo 

(7.144 78 X [Q-II T) X (9.302 X 109) 0.6646l 
= 

.9Jo .9Jo/T 

0.664 6T ,..-;;;;;;-] 
811 = 0.33364 =~ 

0.664 6T r:;-;;;;::;-J 

8l. = 0.33194 = ~ 
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H H 

R H Figure 15.8 

Construct the spectrum by taking into account first the two equivalent 14N splitting (producing a 

II : 2: 3: 2: I quintet I) and then the splitting of each of these lines into a II : 4: 6: 4: I quintet I 
by the four equivalent protons. The resulting 25-line spectrum is shown in Figure 15.9. Note that Pas
cal's triangle does not apply to the intensities of the quintet due to 14N, but does apply to the quintet due 
to the protons. 

0.112mT 

Figure 15.9 

For C6H6, a = Qp with Q = 2.25 mT [ 15.43]. If we assume that the value of Q does not change from 
this value (a good assumption in view of the similarity of the anions), we may write 

a a 
p=- = 

Q 2.25mT 

Hence, we can construct the following maps 

NO, 

o.oo5~No, 
0.076 g 0.005 

0.076 

N02 

0.20060.121 

0.048~NO, 
0.200 

o.o5oAQNo, o.o5o 

0.050¥0.050 

N02 
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Solutions to theoretical problems 

{a) The table displays experimental 13C chemical shifts and computed* atomic charges on the carbon 
atom para to a number of substituents in substituted benzenes. Two sets of charges are shown, one 

derived by fitting the electrostmic potential and the other by Mulliken population analysis. 

Substituent OH CH1 

8 130.1 128.4 
Electrostatic charge/e -0.1305 -0.1273 

Mulliken charge/e -0.1175 -0.1089 

*Semi-empirical. PM3 level, PC Spartan Pro TM 

0.00 

-0.02 

--0.04 

~ -0.06 
1! 
u -0.08 

--0.10 

--0.12 

-0.14 
128.0 

" 
128.5 

0 

• 

129.0 129.5 130.0 

H CF3 CN NO, 

128.5 128.9 129.1 129.4 
-0.0757 -0.0227 -0.0152 -0.0541 
-0.1021 -0.0665 -0.0805 -0.0392 

• Mulliken 

0 Electrostatic 

130.5 

Figure 15.10 

(b) Neither set of charges correlates well to the chemical shifrs. If one removes phenol from the data 
set, a correlation would be apparent, particularly for the Mulliken charges. 

(c) The diamagnetic local contribution to shielding is roughly proportional to the electron density on 
the atom. The extent to which the pam-carbon atom is affected by electron-donating or withdrawing 
groups on the other side of the benzene ring is reflected in the net charge on the atom. If the diamag
netic local contribution dominated, then the more positive the atom, the greater the deshielding and 
the greater the chemical shift 8 would be. That no such correlation is observed leads to several pos
sible hypotheses: for example, the diamagnetic local contribution is not the dominant contribution 
in these molecules (or not in all of these molecules), or the computation is not sufficiently accurate 
to provide meaningful atomic charges. 

Equation 15.39 may be written 

.91 = k(l- 3cos2 8) 

where k is a constant independent of angle. Thus 

r r'" (.91) o: lo (I - 3 cos2 8) sin ecte lo d</J 

r-1 
o:J

1 
(l-3x2)ctxx2rr [x = cos8,dx =-sine d8] 

1

-1 
o: (x- x3) 

1 
= 0 
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We have seen (Problem 15.17) that, if G ex cos wot, then I (w) ex 
1 

, J 
[1 +(wo-w)- r2 

which peaks at w ~ wo. Therefore. if 

G(t) ex a cos WJ t + b cos w2t 

we can anticipate that 

a b 
I (w) ex 

2 
, + .,..--..,..--=-• 

I+ (w, -w) r- I+ (wz -w)2r 2 

and explicit calculation shows this to be so. Therefore. I (w) consists of two absorption lines, one peaking 

at w:::::::: WJ and the other at w:::::::: w2. 

Solutions to applications 

MethionineR 105 is in the vicinity of both typtophan-28 and tyrosine-23 but the latter two residues are 

not in the vicinity of each other. The methionine residue may lay between them as represented in the 
figure. 

H 
I 

.... N 

H 
methionine residue 1 

...... N 

..... c=o 

tryptophan residue 

/ H 
I 

..... N 

OH 

... C~ 
0 

tyrosine residue 

Figure 15.11 

At, say, room temperature, the tumbling rate of benzene, the small molecule, in a mobile solvent, may be 
close to the Larmorfrequency, and hence its spin-lattice relaxation time will be short. As the temperature 

increases, the tumbling rate may increase well beyond the Larmor frequency, resulting in an increased 
spin-lattice relaxation time. 

For the large oligopeptide at room temperature, the tumbling rate may be well below the Larmor fre

quency, but with increasing temperature it will approach the Larmor frequency due to the increased 

thermal motion of the molecule combined with the decreased viscosity of the solvent. Therefore, the 
spin-lattice relaxation time may decrease. 
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(a) The first figure displays spin densities computed by molecular modeling software (ab initio, density 

functional theory, Gaussian 98™). 

0.409 

O• 082 

0.299 0.271 

-0.135 -0.129 

CH3 
-0.024 

69 

0• 

H 

H 

(b) First, note that the software assigned slightly different values to the two protons ortho to the oxygen 

and to the two protons meta to the oxygen. This is undoubtedly a computational artifact, a result 
of the minimum-energy structure having one methyl proton in the plane of the ring, which makes 

the right and left side of the ring slightly non-equivalent. (See second figure.) In fact, fast internal 
rotation makes the two halves of the ring equivalent. We will take the spin density at the ortho 

carbons to be 0.285 and those of the meta carbons to be -0.132. Predict the form of the spectrum by 

using the McConnell equation (15.43) for the splittings. The two ortho protons give rise to a 1:2: l 

triplet with splitting 0.285 x 2.25 mT = 0.64 mT; these will in tum be split by the two meta protons 

into I :2: I triplets with splitting 

0.132 x 2.25 mT = 0.297 mT = 0.297 mT. 

And finally. these Lines will be seen to be further split by the three methyl protons into L :3:3: L 

quartets with splittings 1.045 mT. Note that the McConnell relation cannot be applied to calculate 

these latter splittings, but the software generates them directly from calculated spin densities on 

the methyl hydrogens. The computed splittings agree well with experiment at the ortho positions 

(0.60 mT) and at the methyl hydrogens ( L.l9 mT). but Less well at the meta positions (0. L 45 mT). 

We use u = YN.'!tloe = YN (l- a) f!2J [15.17] 
2rr 2rr 

where f!2J is the applied field. 

Because shielding constants are quite small (a few parts per million) compared to I, we may write for 

the purposes of this calculation 

YN.'!t 
U=--

2rr 

VL- VR =100Hz= YN (f!iJL- @R) 
2rr 

2rr x lOos- 1 

f!iJL- @R = ----
YN 

2rr x lOos- 1 

"'2-:6.-=7"52=--x--:-:10:;7-::T:--;1-s ' 1 - 2"35 X 10-
6 

T 

= 2.351l.T 



The field gradient required is then 

2.35 ~T I -I I --- = 29~Tm 
0.08m 
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Note that knowledge of the spectrometer frequency, applied field, and the numerical value of the chemical 

shift (because constant) is not required. 
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E16.1(b) 

16 
Statistical 
thermodynamics 1 
concepts 

the 

Answers to discussion questions 

See Figure 16.11 and 16.13, lllustration 16.4, Self-test 16.6 in the text and the solution to 
Exercise 16.8(a) 

The simple zipper model for the conversion of a polypeptide helical (h) chain to a random coil (c) begins 

with nucleation whereby an h residue makes an independent transition to a c residue with a probability 
that depends upon as where a < I and sis the stability parameter. After the nucleation conversion, only 

residues adjacent to a c undergo the h to c transition and they do so non-cooperatively with a probability 
that depends upon the stability parameter. The Zimm-Brag model allows for multiple nucleation sites. 

Identical particles can be regarded as distinguishable when they are localized as in a crystal lattice where 

we can assign a set of coordinates ro each particle. Strictly speaking, it is the lattice site that carries the 
set of coordinates, but as long as the parlicle is fixed to the site, it too can be considered distinguishable. 

Solutions to exercises 
Ne-/Jt:; 

lli = ---
q 

whereq = L e-fJt:; 

j 

Thus 

II'J 1 
Given--=-=-, !:J.t = 300cm- 1 

Ill 2 

( 
Icm-1 ) 

k = ( 1.380 66 x 10-23 J K- 1) x -:--7-=-c-c-~--oc,_3,-o1 = 0.695 06cm- 1 K- 1 
1.9864 X 10 

112 = e-t:.EjkT 

Ill 

("') In -" = -6£/kT 
Ill 

-6.£ 6.£ 
T = = .,-,-,--,.--,-

k!n(n,fnl) kln(n1/112) 

300cm- 1 - ~ 
= =622.7K"'~ 

(0.695 06 em 1 K 1) ln(2) 
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E16.2(b) (a) ( 
fJ )'I' ( 1 )'1

2 
A= h -- [16.19] = h --

2rr m 2rr mkT 

(b) 

= (6.626 x 10-34 J s) 

x C2rr) x (39.95) x (1.6605 x 10 27 kg) x (1.381 x 10 

276pm 
= (T/K)ll2 

1/2 

23 JK 1)xT) 

-6 3 K Jf? 
, = ~ [16.19] = (l.OO x IO m) x (Tj )· - = 4.76 x 1022 (T/K)312 
1 A' (2.76 x 10 10 m)3 

(i) T = 300 K. A = 1.59 x 10- 11 m = rll--:5--:.9,-p-m'l· q = 12.47 x 1026 1. 

(ii) T = 3000 K, A = 15.04 pm I· q = 17.82 X I o"l 
Question. At what temperature does the thermal wavelength of an argon atom become comparable to 
its diameter? 

E16.3(b) The translational partilion function is 

E16.4(b) 

E16.5(b) 

qtr = ~ (2kTrrm)J(!. ,. 
so qx, = (mx,)'l' = (131.3u)312 =1187.91 

qHc Ill He 4.003 U 

q = L gje-fle; = 2 + 3e-fht + 2e-fh:2 

levels 

Thus q = 2 + Je-(1.4388x 1250/2000) + ze-(1.4388x1300/2000) 

= 2 + 1.2207 + 0.7850 = 14.0061 

E = u- U(O) = _f'!.. dq = _f'!.. -"-c2 + 3e-~'' + 2e-#'') 
q dfJ q dfJ 

=-!}_(-3ele-flt:t -2e2c-f:l"2) = Nhc (3iie-flllcl·t +2iie-.8116'2) 
q q 

= (~~~~) x {J(llSOcm-1) x (e-(1.4388xl250j2000)) 

+l(IJOOcm-1) X (e-(1.4388x1J00/2000))} 

(NI\hc) 1 = 
4

_
006 

x (2546 em- ) 

= (6.022 x 1023 moi- 1) x (6.626 x 10-34 Js) x (2.9979 x 1010 cms- 1) x (2546cm- 1)j4.006 

= 17.605 kJ mol- 1 I 
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E16.6(b) In fact there are two upper states, but one upper level. And of course the answer is different if the 

question asks when 15 percent of the molecules are in the upper level, or if it asks when 15 percent of 

the molecules are in each upper state. The solution below assumes the fanner. 

The relative population of states is given by the Boltzmann distribution 

112 = exp (-!:;£) = exp (-l!cv) so 
II] kT kT 

111 -hcV 
In-=:=--

flt kT 

Having 15 percent of the molecules in the upper level means 

0.15 

I- 0.15 
so 

112 
= 0.088 

II] 

and T = 
-(6.626 x I0-34 Js) x (2.998 x I0 10 cms- 1) x (360cm- 1) 

(1.381 X 10 23 J K 1) X (In 0.088) 

=1213K I 

E16.7(b) The energies of the states relative to the energy of the state with m, = 0 are -yNI138, 0, + YNh:JB, where 
YNii = 2.04 x 10-27 JT- 1. With respect to the lowest level they are 0, YNn, 2yNIL 

The partition function is 

q = L e -E_,t~tclkT 

stmcs 

where the energies are measured with respecl to the lowest energy. So in this case 

(
-YNruz) (-2YNruz) 

q = I + exp kT + exp kT 

As .'!IJ is increased at any given T, q decays from q = 3 toward q =I as shown in Figure l6.l(a). 

2 

Figure 16.1(a) 

The average energy (measured with respect to the lowest state) is 

I + YNIL'fiJ exp ( -YNilf}S(kT) + 2YNM1lexp ( -2YNil!fiJ (kT) 

I+ exp(-YNM1l(kT) +exp(-2YNii.'l'l/kT) 
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The expression for the mean energy measured based on zero spin having zero energy becomes 

E = YNr~- YNr~exp (-2YNI~/kT) = YNr~ (I - exp (-2YNh.'iS/kT)) 

I + exp ( -YNh.'iS/kT) + exp ( -2YNr~;kT) I + exp ( -YNI!.'iS/kT) + exp ( -2YNr~;kT) 

As §!J is increased at constant T, the mean energy varies as shown in Figure 16.l(b). 

Figure 16.l(b) 

The relative populations (with respect to that of the lowest state) are given by the Boltzmann factor 

(-!!.E) (- YN h.'iS) exp /(j'"" = exp kT ( 
-2YNI!.'iS) 

or exp kT 

YNI!.'iS (2.04 x 10-27 Jr 1) X (20.0T) _3 Note that -k- = 1.3
81 

x 
10 231 K 1 = 2.95 x 10 K 

so the populations are 

(
-2.95 x 10-3 K) ~ 

(a) exp = ~ and 
l.OK (

2(-2.95 X 10-3 K)) ~ 
exp =~ 

l.OK 

(
-2.95 X 10-3 K) 

(b) exp 
298 

=I 0.999991 

(
2(-2.95 x 10-3 K)) 

and exp 
298 

=I 0.999981 

E16.8(b) (a) The ralio of populations is given by the Boltzmann factor 

112 (-!!.E) -25 0 KfT - =exp -- =e · 
111 kT 

(!) At 1.00 K 

and 
113 = e -50.0 K/T 

"' 

"' (-25.0K) I I ....:: = exp = 1.39 X 10-l~ 
111 LOOK 

113 (-50.0K) I "I and - = exp = 1.93 x 10~ 
"' 1.00 K 
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(2) At 25.0 K 

m (-25.0K) ~ -" =exp =~ 
"' 25.0 K 

113 (-50.0K) ~ and - =exp =~ 
"' 25.0K 

(3) At 100 K 

m ( - 25 . 0 K ) r;;-:;:;;;l -" =exp =~ 
II] 100 K 

"' (-50.0K) ~ and --'- = exp = ~ 
"' lOOK 

(b) The molecular parlition function is 

q = L e -E_,lJtcfkT = 1 + e -25.0 KJT + e -50.0 K/T 

states 

At 25.0 K, we note that e-25 ·°K/T = e- 1 and e-SO.OK/T = e-2 

q= l +e- 1 +e-2 =11.5031 

(c) The molar internal energy is 

NA (aq) Um = Um(O)-- -
q 8{3 

where f3 = (kT)- 1 

So Um = Um(O)- NA (-25.0K)k (e-25.0K/T + 2e-50.0KfT) 
q 

At 25.0 K 

(6.022 x l023 mol- 1) X (-25.0K) X (1.381 X l0-23 JK- 1) 

1.503 

x (e- 1 + 2e-2) 

= 188.3 J mol- 1 I 
(d) The molar heat capacity is 

C = (aUm) =N (25.0K)k~~ (e-25.0K/T +2e-50.0KJT) 
V.m iJT V A aT q 

=NA(25.0K)k x (2:~2K (e-25.0K/T +4e-50.0K/T) 

_ ~ (e -25.0 KjT + 2e -50.0 K/T) aq) 
q2 ar 

where aq = 25.0 K (e-25.0 K/T + 2e-50.0 KiT) 
ar r 2 
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so C = e-25.0K/T + 4e-50.0K/T _ ::.c_ ___ .:._:::_ __ ...:._ 
NA(25.0K)2k ( (e-25.0K/T + 2e-50.0KfT)2) 

V,m T2q q 

At25.0K 

(6.022 X 1023 mol-l) X {25.0K)2 x {1.381 x I0-23 JK- 1) 
Cv _c_ ______ ~~~-~~~-----~ 

.m - (25.0 K)2 X { 1.503) 

(
- -' (e-1 +2e-2)2) 

x e 1 + 4e - - ::.c_-,-~:,.-:._ 
1.503 

=13.53JK- 1 mol- 11 

(e) The molar entropy is 

u - u (0) 
S - m m +N kl m- T A nq 

At 25.0K 

88.3Jmol- 1 
"3 1 "3 1 

Sm = 
25

_QK +(6.022 x IO- mol-) X {1.381 x 10-- JK-) In 1.503 

"' 
no 

=k92JK- 1 mol- 11 

n1 I 
Set - = - and solve forT. 

no e 

In G)= ln3 + (-:;B) 
hcB 

T = c-k(:-:-1-:+c...,l-n 3""') 

6.626 X w-34 Js X 2.998 X I0 10 cms- 1 X 10.593cm-l 
= 

+1.381xl0 23JK 'x(l+l.0986) 

E16.10(b) The Sackur-Tetrode equation gives the entropy of a monatomic gas as 

(
e5f2kT) 

S = nRln pA' 

(a) At 100 K 

h 
where A = --=== 

../2kTrrm 

6.626 x w-3' 1 s 
A= lf' (2(1.381 X IQ-23JK-I) x {lOOK) x rr(l31.3u) x {1.66054 X IQ-27kgu-l)j -

= 1.52 X 10-ll m 
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1 1 (e512(1.38lx10-23 JK- 1)x(I00K)) 
and Sm = (8.3145JK- mol- )ln (1.013 x 10' Pa) x (1.52 x 10 II m)3 

= 1147 J K- 1 mol-l I 

(b) At298.15 K 

and 

6.626 X 10-34 ) S 

A= {2(1.381 X 10-"JK-1) x (298.15K) xrr(l31.3u) X (1.66054x 10-27 kgu- 1)j 112 

= 8.822 x 10- 12 m 

S = (8.3145JK- mol- )In 1 1 (e512(1.381 x 10-23 J K- 1) x (298.15 K)) 
m (1.013 x 105 Pa) x (8.822 x 10 12 m)3 

= '11-69-.6-J_K __ -,-m-ol--', I 

q=i-e#' 1 _ e llc/N 

(1.4388cm K) x (321 cm- 1) 6 
lzcf3v = 

600 
K = 0.7697 

1 -
Thus q = = 1.863 

1 _ e-0.76976 

The internal energy due to vibrational excitation is 

Nee-f3e 
U- U(O) = • l- e ,-e 

Nhcve-l!ciJf3 NhcV - 1 
= I ., = (0.863) X (Nhc) X (321 em- ) 1 _ e l!cVf3 e 1cvp _ 1 

~ U-U~ (k) 1 -and hence - = + ln q = (0.863) x - x (321 em- ) + ln(l.863) 
NAk NAkT kT 

(0.863) x (1.4388Kcm) x (321 cm- 1) In 1.
863

) 
600K + ( 

= 0.664 + 0.62199 = 1.286 

and Sm = 1.286R = 110.7 J K- 1 mol-l I 

E16.12(b) Inclusion of a factor of (N!)-t is necessary when considering indistinguishable particles. Because of 

their translational freedom, gases are collections of indistinguishable particles. The factor, then, must 

be included in calculations on I (a) C02 gas 1-
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Solutions to problems 

Solutions to numerical problems 

P16.2 Although He is a liquid at these temperatures (Tb = 4.22 K), we will test it as if it were a perfect gas 

with no interaction potential 

Ni P.c-
Pi =- = g,e-" 'fq [16 6a] N . 

h2 
2 2 2 . 

Ei = --,{n, +n,. +n.] [16.16]. 
8mX- · · " 

v 
q = Jl3; il =" _!!__ [16.19] ( )

1/2 

2rrm 

Ground state n.r = ny = n::. = 1; g = I 

First excited state 

llx = 1ly = 1; 

llx =II: = 1; 
ny = llz = 1; 

ll- = 2 } 
n,.=2 g=3 
n.r = 2 

v v 
q = 113 = h' (2rr mkT)312 

(I cm3) x ( 
1

m' ) x [2rr (1.381 x 10-23 J K- 1)]+3/ 2 x (mT)+3/ 2 

106 cm3 
=----~~~--------~,-----------

( 6.626 X 10-34 J S )' 

= 2.28 x 1060 kg- 312 K-3/ 2 (mT)3i 2 

/lEi""d"d = (k~) X ( 8~~~~ 2 ) (6) 

6 (6.626 x 10-34 J s)2 

=--,----'--=--,.,.---'-----,. 
8(1.381 X 10-23JK ')X (0.01m)2mT 

2.38 x I o-40 kg K 
= 

mT 

-(2,)8x l0-40kgK) 
3e ml 

Plstcxcitcd = (2.78 X 1Q60 kg 3/2 K-3/2) X (mT)3f2 

Isotope mfkg TjK PI st excited Occupancy = pN = 1022 p 

4He 6.64 x 10_27 0.0010 6.30 x 10- 17 6.30 X 105 

2.0 7.04 x 10_22 7 
4.0 2.49 x 10-22 2 

3He s.o1 x 10_27 0.0010 9.63 x 10- 17 9.63 x 105 

2.0 1.08 x 10-21 II 

4.0 3.81 x 10-22 4 
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These results may at first seem to contradict the expected common sense result that the populations of 
excited stales increase as the temperature increases, but the energy separations of these states is so small 

that even a slight increase in temperature promotes the panicles to much higher quantum states. 

P16.4 S =kIn W or W = e51' [16.34] 

P16.6 

P16.8 

(aw) w (as) av T.N = k aV T.N 

e'l' v [ e5/2 ] 
S = nRin NA' = nR In V +In NA' 

(as) (alnV) 
aV TN =nR av TN 

' . 
nR 

v 

NRW NW 
= 

I'.W "'NI'.V = pV I'.V 
W V kT V 

(\X !05 Pa) X (20m3) x (\ x \0-5) 
"' -'-'-;(71.-:03.;;.81,..::.-x:::l-;;0-2"'3'-:J..;.K;'-',1,.-) _x:.:("'30;;:0,CKC;),...:. 

"'14.8 X 1021 I 

Notice that the value of W is much larger than that of 6. W JW. For example, at the conventional 
temperature the molar entropy of helium is 1261 K- 1 mol- 1• Therefore, 

S=nS = (pV)s =(I x 105 Pa) x (20m3) x (126JK-l mol-l) 
m RT m (8.315 J K I mol 1) x (298 K) 

= 1.02 X 105 J K- 1 

s \.02x105 JK- 1 

= 
k 1.381 X 10 23JK 

= 7 36 x 1027 
I . 

111 g1e-e!/kT = ~ X e-t:.cjkT = ~ x e-hcVjkT = 2e-l(l.4388x450)/300} = 0.23 
no goe eo/kT 2 2 

The observed ratio is 0.30/0.70 = 0.43. Hence the populations are I not at equilibrium I· 

First we evaluate the partition function 

j j 
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At 3287 °C = 3560 K, hcf3 = 1.
438 77 

em K = 4.041 x 10-4 em 
3560K 

q = 5 + ?e -{(4.041 x to-~ em) x(l70cm- 1 )) + 9e -1(4.041 x to-4 em) x (387 cm- 1 )} 

+ 3e -{(4.041 x 10-~ cm)x (6557 cm-t )) 

= (5) + (7) X (0.934) + (9) X (0.855) + (3) X (0.0707) = 19.445 

The fractions of molecules in the various states are 

('F ) = (7) X (0.934) =I 0.3361 
p 3 19.445 

3 (9) X (0.855) ~ 
p( F4) = 19.445 = ~ 

4 (3) X (0.0707) ~ 
p(Ft)= 19.445 =~ 

COMMENT. LjPi = 1. Note that the most highly populated level is not the ground state. 

The partition function is the sum over states of the Boltzmann factor 

q = L exp (- k~) = L exp (-";n = L gexp (-";n 
states states levels 

where g is the degeneracy. So, at 298 K 

( 
(6.626 x 10-34 J s) x (2.998 x 1010 em s- 1) x (557.1 em- 1)) 

q = I + 3 exp ( 1.381 x I 0 23 J K I) x (298 K) + .. 

= luo91 
At 1000 K 

( 
(6.626 x 10-34 Js) x (2.998 x 10 10 ems- 1) x (557.lem-')) 

q = I + J exp ( 1.381 x I 0 23 J K I) x (I 000 K) + ... 

= 13.0041 

(a) Total entropy, S = St + S2 = (5.69 + 11.63) J K- 1 = 17.32 J K- 1 

= el.254xJ024 = 105.44xl023 

(b) Totalentropy,S=2mol(9.03JK- 1 mol- 1) = 18.06JK- 1 

W = eSfk = el8.06JK- 1/1.38lxl0-23 JK-t 

= el.31x!024 = 105.69xl023 
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The final temperature is not the average because the molar heat capacity of graphite increases with 
temperature. At 298 K. it is 8.541 K- 1 mol-l, whereas at 498 Kit is 14.641 K- 1 moi- 1• 

{c) At constant internal energy and volume the condition for spontaneity is 16.Su.v > 0 I· Since 

1 w(b) > w,ll) 1· the process part (b) is 1 spontaneous 1 

Solutions to theoretical problems 

P16.14 We draw up the following table 

0 " 2< 3e 4e 5e 6< 7< 8e 9e w 
8 0 0 0 0 0 0 0 0 I 9 
7 I 0 0 0 0 0 0 I 0 72 
7 0 I 0 0 0 0 I 0 0 72 
7 0 0 I 0 0 I 0 0 0 72 
7 0 0 0 I I 0 0 0 0 72 
6 2 0 0 0 0 0 I 0 0 252 
6 0 2 0 0 I 0 0 0 0 252 
6 0 0 3 0 0 0 0 0 0 84 
6 0 0 2 0 0 0 0 0 252 
6 I 0 0 0 I 0 0 0 504 
6 0 0 0 0 0 0 504 
6 0 I 0 0 0 0 0 504 
5 3 0 0 0 0 I 0 0 0 504 
5 0 3 I 0 0 0 0 0 0 504 
5 2 0 0 I 0 0 0 0 1512 
5 2 0 I 0 0 0 0 0 1512 
5 2 0 I 0 0 0 0 0 1512 
5 I 2 0 0 0 0 0 0 1512 
4 4 0 0 0 I 0 0 0 0 630 
4 3 I 0 I 0 0 0 0 0 2520 
4 3 0 2 0 0 0 0 0 0 1260 
4 2 2 0 0 0 0 0 0 3780 
3 5 0 0 I 0 0 0 0 0 504 
3 4 I 0 0 0 0 0 0 2520 
2 6 0 I 0 0 0 0 0 0 252 
2 5 2 0 0 0 0 0 0 0 756 
I 7 I 0 0 0 0 0 0 0 72 
0 9 0 0 0 0 0 0 0 0 

The most probable configuration is the "almost exponential" I { 4,2,2, I ,0,0,0,0,0,0} j 

P16.16 (a) q = L_gje-~'i = I+ 3e-~' = j1 + 3e-,lkT I 
j 

" atT= -, q= 1+3e-1 =2.104 
k 
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NA dq NA p 
Urn- Um(O) = E = --- = -(3ee- ') 

q df3 q 

= NA (3RTe- 1) = 
3
RT =I 0.5245 RT I 

q 2.104e 

A numerical value cannot be obtained for the energy without specific knowledge of the temperature, 
but that is not required for the heat capacity or the entropy. 

Cv =(au'") = (aE) 
aT v aT v 

d d{3 d I d 2 d 
Since-=- x- = --- = -k/3 -

dT dT d{3 kT2 d/3 d{3 

2 (a E) 2 a (e-P') Cv = -kf3 - = -kf3 (3eNA)- -
a{3 v a{3 q 

3Re- 1 3R I _ 1 _ 1 I Fore= kT, Cv = 
2 

= , = 2.074J K mol 
(I + 3e-') e (I+ (3/e))-

Note that taking the derivative of 0.5245 RT with regard to T does not give the correct answer. That 
is because the temperature dependence of q is not taken into account by that process. 

aaT(0.5245RT) = 0.5245R = 4.361 J K- 1 moi- 1 

and this is not the correct value. 

The calculation of S does not require taking another derivative, so we can use E = 0.5245 RT 

Sm = ~ + R lnq = 0.5245R + R ln(2.104) = 110.55 J K- 1 mol-l I. 

(a) The form of Stirling's approximation used in the text in the derivation of the Boltzmann 

distribution is 

lnx!=xlnx-x[l6.2] or lnN!=NlnN-N 
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and Inn;!= n; Inn;- n; which then leads to [Niscancelled by- L; n;] 

In W = NlnN- Lni Inn, [16.3] 

If N! = NN, InN!= N InN, likewise Inn;!= n; Inn; and eqn 3 is again obtained. 

(b) For lnx! = (x + 1) lnx- x + 1In 2rr [Comment 16.2], 
Since the method of undetermined multipliers requires only (Further Information 16.1) din W, 
only the terms din n;! survive. The constant term,! ln2rr, drops out, as do all terms din N. The 

difference, then, is in terms arising from Inn;! We need to compare n; Inn; to! In 11;, as both these 

terms survive the differentiation. The derivatives are 

a 
-(n; In ni) = I +Inn; :::::::: In n;[large n;] 
an; 

- -Inn; =-a (I ) I 
an; 2 21lj 

Whereas In n; increases as n; increases, 1/2n; decreases and in the limit becomes negligible. For 

n; = I x I 06 , Inn; = 13.8, lj2n; = 5 x I o-7; the ratio is about 2 x I 08 which could probably not be 
seen in experiments. However, for experiments on, say, 1000 molecules, such as molecular dynamics 

simulations, there could be a measurable difference. 

Solutions to applications 

p(li) = N(h)/V = e-l<,<hl-,<holl/kTI [16.6a] 
p(lio) N(lio)/V 

For p(O) = po. 

p(h) = e-mgi!Jkt 

PO 

= e-mg(l!-l!o)/kT 

N(8.0km) 

N(O) 
= _N-':(8

7
.0=k..,.m-'-') ;_v 

N(O)/V 

N (8 0 km) -1 (0.032ksmo!- 1 )x(').81 m, -2Jx(H.Ox 103m) l 
. [Q] = e (H.315JK I mol l)x(298KJ 

N(O) 
2 

=I 0.36lfor02 

N(8 0 km) -1 (0.018ksmol-l )x(9.SJ ms-2)x(S_Ox 10J m) l 
· [H.,Q] = e (8.315JK I mol 1Jxi298KJ 

N(O) -

=I 0.57lforH,O 
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(a) The electronic partition function, lJE, of a perfect, atomic hydrogen gas consists of the electronic 

energies £ 11 that can be written in the form: 

£" = (I - _I,) hcRH. 11 = I, 2, 3, ... , oo, 
n-

where we have used the staten = I as the zero of energy (in contrast to the usual zero being at infinite 

separation of the proLOn and electron, eqn 10.11). The degeneracy of each level is g11 = 211 2 where 

the , 2 factor is the orbital degeneracy of each shell and the factor of 2 accounts for spin degeneracy. 

oo oo " -(t-J,-)c 
lJE = L g"e-E,dkT = 2 L tre ,_ , 

II= I II= I 

where C = lzcRHfkTphmosphcrf! = 27.301. CJE. when written as an infinite sum, is infinitely large 

b I. { 2 -(i-(l/n2>)Cj 1- { 2 -C)- -CI· ( 2)- Th . I ·· f ecause Irn11 ....... 00 n e = Im11 ....... 00 " e - e IIn 11 ___,. 00 11 - oo. e me us ton o 
partition function terms corresponding to large n values is clearly an error. 

(b) States corresponding to large 11 values have very large average radii and most certainly interact with 

other atoms, thereby, blurring the distinct energy level of the state. Blurring interaction most likely 

occurs during the collision between an atom in state tJ and an atom in the ground stare 11 = I. 
Collisional lifetime broadening (eqn \3.18) is given by: 

h z,h 
OE, = 2nT = 2n' 

where z, = collisional frequency of nth state of atomic perfect gas 

[21.ll(b)] 

' c =mean speed= (~R;)' = 1.106 x 104 ms- 1 [21.7] 

a, = collisional cross-section of nth state (Figure 21.9) 

= rr((r)" + ao)2 

'(3112+2)' = rra0 --
2
- (Example 10.2) 

Any quantum state within OE of the continuum of an isolated atom will have its energy blurred by 

collisions so as to be indistinguishable from the continuum. Only states having energies in the range 

0 .:::: E < £ 00 - OE will be a distinct atomic quantum state. 

The maximum term, llmax. that should be retained in the partition function of a hydrogen atom is 

given by 

ro '(3"~"' + 2)'- N" v .!.Jra- cp " 

( I - -+-) hcRH = hcRH-
0 2 

11max 21l"MH 

with p = 1.99 x 10-4 kgm-3 and MH = 0.001 kgmol- 1• 
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~ 

The root function of a calculator or mathematical software may be used to solve this equation 

for II max: 

I limax = 281 for atomic hydrogen of the photosphere 

Furthermore, examination of the partition function terms 11 = 2, 3, ... ,II max indicates that they are 
negligibly small and may be discarded. The point is that very large n values should not be included 

in q£ because they do not reflect reality. 

Pn = where T = 5780 K [eqn 16.6] 

0 ,.-----,------,,-------,------,-------,-,-----, 

~ -5 
.2 

(a) 

" Figure 16.2 

Even at the high temperature of the Sun's photosphere only the ground electronic state is significantly 
populated. This leads us to expect that at more ordinary temperatures only the ground state of atom 

and molecules are populated at equilibrium. It would be a mistake to thoughtlessly apply equilibrium 
populations to a study of the Sun's photosphere, however. h is bombarded with extremely high 

energy radiation from the direction of the Sun's core while radiating at a much lower energy. The 

photosphere may show significant deviations from equilibrium. 

SeeS. J. Strickler, J. Chem. Ed .. 43, 364 (1966). 

" q =I+ I:N;K; 
i=l 

But, K1 = ue-t::.G/RT =us 

K2 = K,s = us2 

K3 = K1s2 = us
3 

Therefore, 

" q =I+ I:N;as' 
i=l 
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To show that N; =" - i + I consider the following figure of 11 positions having an "X" label. 

2 3 
X X X 

YL 
X X X X 

YR II - I II 

Starting from the left, there are a total of YL groups of i positions where YL is limited because an 

additional group of i would extend beyond the nth position. There are more groups of i. We may 
start from the right and count off groups of i until reaching position YR where YR is limited because 

an additional group of i would be identical to the group starting at YL· In fact, YR = n- YL + (i- I)}. 

Consequently. 

Ni = )'L + YR = J'L +II -(YL + (i- 1)} = 11- i + 1 

" 
(b) q=1+I:Nws' 

i=l 

d " q "·N i-l - = Ll ,as 
ds 

i=l 

n . dq 
and L iN,as' =-

i=l ds 

" 
=s- 1 LiN;asi 

i=l 

We may substitute the above expression into the equation for the degree of conversion, 8, that is 

given in the box. 

( 1)~ i sdq 8= - wiN;as =--
nq i= 1 nq ds 

Since dq/q = d(ln q) and ds/s = d(ln s), the expression becomes 

( 
1) d(ln q) 

e = ;; d(ln s) 
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17 
Statistical 
thermodynamics 2: 
applications 

Answers to discussion questions 

The symmetry number, a, is a correction factor to prevent the over-counting of rOlational states when 

computing the high temperature form of the rotational partition function. An elementary interpretation 

of a is that it recognizes that in a homonuclear diawmic molecule AA the orientations AA' and A' A 

are indistinguishable, and should not be coumed twice, so the quantity q = kT jl!cB is replaced by 

q = kT jallcB with a= 2. A more sophisticated interpretation is that the Pauli principle allows only 

certain rotational states to be occupied, and the symmetry factor adjusts the high temperature form of 

the partition function (which is derived by taking a sum over all states), to account for this restriction. In 

either case the symmetry number is equal to the number of indistinguishable orientations of the molecule. 

More formally, it is equal to the order of the rotational subgroup of the molecule. (See Chapter 12.) 

The temperature is always high enough for the mean translational energy to be ~kT, the equipartition 

value (provided the gas is above its condensation temperature). Therefore, the molar constant-volume 

heat capacity for translation is C~.m = ~R. 

Translation is the only mode of rnmion for a monatomic gas, so for such a gas Cv.m = ~R = 
12.47 J K- 1 mol- 1. This resull is very reliable: helium, for example has this value over a range of 

2000 K. 

When the temperature is high enough for the rotations of the molecules to be highly excited (when 

T » 8R) we can use the equipartition value kTfor the mean rotational energy (for a linear rotor) to obtain 

Cv.m = R. For nonlinear molecules. the mean rotational energy rises to ~kT, so the molar rotational heat 

capacity rises to ~R when T >> 8R. Only the lowest rotational slate is ~ccupied when the temperature 

is very low. and then rmation docs not contribute to the heat capacity. We can calculate the rotational 

heat capacity at intermediate temperatures by differentiating the equation for the mean rotational energy 

(eqn 17 .26a for a linear molecule). The resulting expression is plotted in Figure 17.10 of the texL 

Because the translational contribution is always present, we can expect the molar heat capacity of a gas 

of diatomic molecules (Crm + cB_
111

) to change from ~R to ~R as the temperature is increased above eR. 

Molecular vibrations contribute to the heat capacity, but only when the temperature is high enough for 

them to be significantly excited. For each vibrational mode, the equipartition mean energy is kT. so the 

maximum contribution to the molar heat capacity is R. However, it is very unusual for the vibrations to 

be so highly excited that equipartition is valid, and it is more appropriate to usc the full expression for the 

vibrational heat capacity which is obtained by differentiating eqn 17 .28. The curve in Figure 17.12 of the 
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text shows how the vibrational heat capacity depends on temperature. Note that even when the temperat

ure is only slightly above the vibrational temperature, the heat capacity is close to its equipanition value. 

The tmal heat capacity of a molecular substance is the sum of each contribution (Figure 17.13 of the 

text). When equipanition is valid (when the temperature is well above the characteristic temperature of 

the mode T » BM) we can estimate the heat capacity by counting the numbers of modes that are active. 

In gases, all three translational modes are always active and contribute ~R to the molar heat capacity. If 

we denote the number of active rotmional modes by vR (so for most molecules at normal temperatures 

vR_ = 2 for linear molecules, and 3 for nonlinear molecules), then the rotational contribution is ~vR_R. 
If the temperature is high enough for 1.1~ vibrational modes to be active the vibrational contribution to 

the molar hem capacity is vR_R. In most cases vv :::::;- 0. It follows that the total molar heat capacity is 

Cv.m = !<3 + vR, + 2v\r)R 

The pair distribution function is a statistical method for studying the complex properties of liquids. 

It is especially important because, being a Fourier transform of the intensity distribution of scattered 

radiation, the function relates directly to experimental observation. Equations, which use both the pair 

distribution function and the intermolecular potential, have been derived for the computation of both 

equilibrium thermodynamic properties and the equation of state for model liquids [ 17.50 and 17.51 ]. 
However, the computational demands of these equations make the Monre Carlo method and methods 

of molecular dynamics atlractive. The Monte Carlo method randomly displaces molecules and accepts, 

or rejects, the new molecular configuration with a Boltzmann factor test, which has a potential energy 

change exponent. Thermodynamic properties are computed as a weighted average of the properties of 

acceptable configurations. Molecular dynamic methods use Newtonian equations of motion and model 

intermolecular potentials to compute the motion of molecules as a function of time. Since molecular 

rotational and vibrational motion occur on the order of 1013 Hz, the time increment for calculations is 

taken to be about 10- 15 s (a femtosecond, fs). Properties are computed as time averages. 

Solutions to exercises 

with a mode active if T >eM. 

(a) o,: Cv.m = 1(3 + 3 + O)R = 3R [experimental= 3.7R] 

(b) C2H6: Cv.m = t(3 + 3 + 2 x I)R = 4R [experimenlal = 6.3R] 

(c) C02 : Cv.m = t(3 + 2 + O)R = ~R [experimental= 4.5R] 

Consultation of the Herzberg references in Further readi11g, Chapters 13 and 14, turns up only one 

vibrational mode among these molecules whose frequency is low enough to have a vibrational temper

ature near room temperature. That mode was in C2H6. corresponding to the "internal rotation" of CH;~ 

groups. The discrepancies between the estimates and the experimental values suggest that there are vibra

tional modes in each molecule that contribute to the heat capacity-albeit not to the full equipartition 

value-that our estimates have classified as inactive. 

E17.2(b) The equipartition theorem would predict a contribution to molar heat capacity or !R for every 

translational and rotational degree of freedom and R for each vibrational mode. For an ideal gas. 

Cp.m = R + Cl'.m· So for C02 



312 INSTRUCTOR'S SOLUTIONS MANUAL 

With vibrations 

Without vibrations Cv,m/R = 3 (t) + 2 (~) = 2.5 and y = ~:~ = 11.40 I 
37.11 J mol-IK- 1 ,---;;;;-] 

Experimental y = 1 = ~ 
(37.11- 8.3145) J mol K I 

The experimental result is closer to that obtained by neglecting vibrations, but not so close that vibrations 
can be neglected entirely. 

E17.3(b) The rotational partition function of a linear molecule is [Table 17.3] 

qR = 0.6950 X T /K = (0.6950) X (T (K) = 0.2404(T /K) 
a (B(cm 1) 2 x 1.4457 

(a) At 25 'C: qR = (0.2403) x (298) = ~ 
(b) At 250 'C: qR = (0.2403) x (523) = ~ 

E17.4(b) The symmetry number is the order of the rotational subgroup of the group to which a molecule belongs 
(except for linear molecules, for which a = 2 if the molecule has inversion symmetry and l otherwise). 

(a) C02: full group Dooh: subgroup C,; hence a= [I] 
(b) O,: full group C,,; subgroup C,; a = [Ij 
(c) S03: full group D,h; subgroup[£, C,, Cj,3C,}; a= @J 
(d) SF6: full group Oh; subgroup 0; a = 1241 

(e) Al,Cl6: full group D2d; subgroup Dz; a = [±] 

E17.5(b) The rotational partiLion function of a non-linear molecule is [Table 17.3] 

E17.6(b) 

R 1.0270 (T /K)312 1.0270 X 298312 ~ 
q = a (ABC(cm 3) 112 = (2) X (2.027 36 x 0.344 17 x 0.293 535) 1/2/a = 21 = ~ 

The high-temperature approximation is valid if T > 8R, where 

hc(ABC) 113 

OR= k 

(6.626 x 10-34 J s) x (2.998 x 1010 em s- 1) x [(2.027 36) x (0.344 17) x (0.293 535) cm-3] 113 

1.381 X I0-23 J K I 

=I 0.8479 K I 
qR = 5837 [Exercise 17.5(b)] 
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All rotational modes of S02 are active at 25 °C; therefore 

U~- U~(O) = ER = ~RT 
ER 

SR =- +R lnqR 
m T 

= ~R+Rln(5837) =184.57 J K- 1 mol- 1 1 

E17.7(b) (a) The partition function is 

states levels 

where g is the degeneracy of the level. For rotations of a symmetric rotor such as CH3CN, the energy 

levels are E1 = hc[BJ(l +I)+ (A- B)K2] and the degeneracies are gJ,K = 2(21 +I) if K -10 
and 2J + I if K = 0. The partition function, then, is 

q = 1 + t(2J + l)e-lhc-BJ(J+II/kT} (I + 2 t e-[hc(A-B)K'/kT}) 

1=1 K=l 

To evaluate this sum explicitly, we set up the following columns in a spreadsheet (values for A = 
5.28 cm- 1, B = 5.2412 cm- 1, and T = 298.15 K) 

J J(l +I) 2J +I e-hcBJ(l+l)/kT Jtenn e-lhc(A-B)K2 jkT) K sum J sum 

0 0 I I I I 

I 2 3 0.997 8.832 0.976 2.953 9.832 

2 6 5 0.991 23.64 0.908 4.770 33.47 

3 12 7 0.982 43.88 0.808 6.381 77.35 

82 6806 165 4.18x w-5 0.079 8x w-71 11.442 7498.95 

83 6972 167 3.27 x w-5 0.062 2 x w-" 11.442 7499.01 

The column labeled K sum is the term in large parentheses, which includes the inner summation. 

The J sum converges (to 4 significant figures) only at about J = 80; the K sum converges much 

more quickly. But the sum fails to take into account nuclear statistics, so it must be divided by the 

symmetry number (a = 3). At 298 K, qR = 12.50 x 103 1. A similar computation at T = 500 K 

yields qR = 15.43 X 103 1. 

(b) The rotational partition function of a nonlinear molecule is [Table 17.3 with B = C] 

R 1.0270 (T jK) 312 1.0270 (T /K)3i 2 
312 

q - a (ABCjcm 3)112 = 3 (5.28 x 0.307 x 0.307)1/2 = 0.485 x (TjK) 

At 298 K, qR = 0.485 x 298312 = 12.50 X 103 1 

At 500 K, qR = 0.485 x 5oo3/2 = 15.43 x w3 1 

The high-temperature approximation is certainly valid here. 
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E17.8(b) The rotational partition function of a nonlinear molecule is [Table 17.3] 

R 1.0270 (T /K)311 
q =--

1.0270 X (T jK) 311 1!' -:::-=::---;:-;=:-'--==""" = 1.549 X (T /K )• -
(3.1752 X 0.3951 X 0.3505)'/2 (1 (ABC fcm 3) 1/ 2 

(a) At 25 "C, qR = 1.549 X (298)312 = 17.97 X 103 1 

(b) AtiOO"C, qR = 1.549 x (373)312 = l1.12 X 104 1 

E17.9(b) The molar entropy of a collection of oscillators is given by 

Sm = Um- Um(O) +klnQ[I7.1] = NA(E) +Rinq 
T T 

hcV Bv 1 1 
where (e)= "I.-. = k 0 /T [17.28], q = "I _ = .,---"'0 -c.;"'r [17.19] 

e~-''(I_J ev -1 1-e~-''n' 1-e"v 

and Bv is the vibrational temperature hcVjk. Thus 

Sm= R(Bv/T) -Rin(l-e-"v!T) 
eBv/T _ 1 

A plot of 5111 I R versus T /Bv is shown in Figure 17 .I. 

2.5 

"' 2 

" V':l 1.5 

0.5 

0 
0 2 4 6 8 10 

Tl8v Figure 17.1 

The vibrational entropy of ethyne is the sum of contributions of this form from each of its seven normal 
modes. The table below shows results from a spreadsheet programmed to compute Sm / R at a given 
temperature for the normal-mode wavenumbers of ethyne. 

T = 298 K T = 500 K 

Vjcm- 1 Bv/K T/Bv Sm/R T/Bv Sm/R 

612 880 0.336 0.216 0.568 0.554 

729 1049 0.284 0.138 0.479 0.425 

1974 2839 0.105 0.000 766 0.176 0.0229 

3287 4728 0.0630 0.000 002 17 0.106 0.000818 

3374 4853 0.0614 0.000 001 46 0.103 0.000 652 
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The total vibrational heat capacity is obtained by summing the last column (twice for the first two entries. 
since they represent doubly degenerate modes). 

(a) At 298 K, Sm = 0.708R =I 5.88 J mol-l K- 1 I 

(b) At 500 K, S, = 1.982R = 116.48 J mol- 1 K- 1 I 

E17.10(b) The contributions of rotational and vibrational modes of motion to the molar Gibbs energy depend on 
the molecular partition functions 

Gm- Gm(O) = -RT lnq [17.9; also see Comment to Exercise 17.6(a)] 

The rotational partition function of a nonlinear molecule is given by 

qR = 2_ (kT) 312 
(-..!:_)1/2 = 1.0270 ( (T/K)

3 
)

112 

" he ABC " ABC jcm 3 

and the vibrational partition function for each vibrational mode is given by 

hcV 
where$=-= 

k 

1.4388 (v/cm- 1) 

(T /K) 

At 298K R = -- = 3.35 X 103 1.0270 ( 298
3 

) 
112 

q 2 (3.553) X (0.4452) X (0.3948) 

and 

G~ - G~,(O) = -(8.3145 J mol- 1 K- 1) x (298 K) In 3.35 x 103 

=-20.1 x !03Jmol- 1 =l-20.1 klmol- 1
1 

The vibrational partition functions are so small that we are better off taking 

lnqv = -ln(l-e-•17) ""e-&fT 

Jnq~ "" 0 -11.4388(1110)/2981 =4.70 X J0-3 

In q)' ""e-11.4388(705)/2981 = 3.32 X w-' 

lnqj' ~ e-!1.4388(1042)/2981 = 6.53 x 10~3 

so G~- G~(O) = -(8.3145 J mol-IK- 1) x (298 K) 

X (4.70 X 10-3 + 3.32 X 10-2 + 6.53 X 10-3) 

= -1101 mol- 1 = l-0.110 kl mol-l I 
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q = Lgje-f3cj, 

j 
{ 

I for E states 
whereg = (2S+ I) x 

2 for n, ~ .... states 

The 3 I: term is triply degenerate (from spin), and the 1 b. tennis doubly (orbitally) degenerate. Hence 

At400 K 

(1.4388cmK) x (7918.1 cm- 1
) 

28 {Je= 400K = ·48 

Therefore, the contribution to Gm is 

Gm - Gm(O) = -RT In q [Table 17.4 for one mole] 

-RT lnq= -(8.314JK- 1 mol- 1) x (400K) x ln(3+2 xe-28·48 ) 

= -(8.314 J K- 1 mol- 1) x (400 K) x (In 3) = 13.65 kJ mol- 1 I 

COMMENT. The contribution of the excited state is negligible at this temperature. 

E17.12(b) The degeneracy of a species with S = ~is 6. The electronic contribution to molar entropy is 

E17.13(b) 

Um- Um(O) 
Sm= T +Rlnq=Rlnq 

(The term involving the internal energy is proportional to a temperature~derivative of the partition func
tion, which in turn depends on excited state contributions to the partition function; those contributions 

are negligible.) 

Sm = (8.3145 1 mol-l K- 1) ln6 = 114.9 J mol-l K- 1 I 

UseSm =Rlns[l7.52b] 

Draw up the following table 

ll: 0 2 3 4 5 6 

0 m p a b c 0 m p 

s I 6 6 6 3 6 6 2 6 6 3 6 1 

Sm/R 0 1.8 1.8 1.8 1.1 1.8 1.8 0.7 1.8 1.8 1.1 1.8 0 

where a is the I ,2,3 isomer, b the I ,2,4 isomer, and c the 1 ,3,5 isomer. 

E17.14(b) We need to calculate 

K = n ....!:"'. X e-Uo/RT [17.54b] = qm 2 qm 2 e-Uo/RT 
(

q"' )''' "(79 Br) "'(81 Br) 
J NA q:',('9Br81 Br)2 
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Each of these partition functions is a product 

q~ = q~qRq V qE 

with all qE = I. 

The ratio of the translational partition functions is virtually I (because the masses nearly cancel; expli
cit calculation gives 0.999). The same is true of the vibrational partition functions. Although the 
moments of inertia cancel in the rotational partition functions, the two homonuclear species each have 
a= 2, so 

qR(9Br2)qR(81 Br2) 
81 = 0.25 qR ('9Br Br)2 

The value of 6-Eo is also very small compared with RT, so 

K "'I 0.251 

Solutions to problems 

Solutions to numerical problems 

P17.2 t>e = s = gJLaB [15.42] 

q =I+ e-P< 

P17.4 

x2e-.t 
Cvm/R = 

2 
[Problem 17.1], x = 2JLaBf3 [g = 2 for electrons] 

. (I + e ·') 

Therefore, if B = 5.0 T, 

(2) x (9.274 X 10-24 JT- 1) x (5.0T) 6.72 
X= 

(1.381 X 10 23JK 1) x T 
= 

T/K 

(a) T =50 K, x = 0.134, Cv = 4.47 x I0-3R, implying that Cv = 3.7 x 10-2 J K- 1 mol- 1. Since 
the equipartition value is about 3R [vR = 3, vt ~ 0], the field brings about a change of about 

I 0.1 per cent I 

(b) T = 298 K, X = 2.26 X w-2, Cv = 1.3 X 10-4 R, implying that c v = 1.1 mJ K- 1 mol-l, a change 

of about 14 X 1 o-J per cent ]. 

Question. What percentage change would a magnetic field of 1 kT cause? 

e = E(J = 2)- E(J = 0) = 6hcB [E = hcBJ(J + I)] 

U- U(O) I 8q 
N =--qap = 

Cv.m = -k{3
2 c~m) v [17.3Ia] 
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Se 2 {3 2 e-~' I80(hcBf3)2e-6"c8~ 
Cv.m/R = li - 61 2 

(I+ Se ')2 (I+ Se "'8~) 

hcB 1 -k- = 1.4388 em K x 60.864 em- = 87.S71 K 

Hence, 

1.380 X J06e-525.4 K/T 
C v I R - -----,----,=~~---cc""' .m - (I + Se 525.4 KIT) x (T 1K)2 

We draw up the following table 

TIK so 100 

C V,m I R 0.02 0.68 

ISO 200 2SO 300 3SO 400 4SO SOO 
1.40 1.3S 1.04 0.76 O.S6 0.42 0.32 0.26 

These points are plotted in Figure 17 .2. 
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T 
P17.6 qm = 2.S61 X w-2 X (TIK) 512 X (Mig moi- 1) 3/2 [Table 17.3] 

NA 

= (2.S6J X J0- 2
) X (298)5

/
2 

X (28.02)3
/

2 = S.823 X J06 

R 0.69SO T IK 0.69S0 298 
q =-a-x (Biem 'l = -

2
- x 1.

9987 
= Sl.81 [Table 17.3] 

I c/ = 
1 

_ e Ov/T [Table 17.3] 

flcv 6.626 X J0-34 J S X 2.998 X 1010 em S-l X 23S8 em-! 
where IJv = - = = 3392 K 

k 1.381 X I0-23 J K 1 

I 
so q V = I _ e 3392Kf298K = l.OQ 
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Therefore 

e 
qm = {5.82J X 106) X {51.8l) X (1.00) = 3.02 X 108 

NA 

3 5 
Um- Um(O) = 2_RT + RT = 2_RT 

Hence 

Um- Um(O) + R (In q~1 + I) 
T NA 

= ~R + R(ln3.02 x 108 +I}= 23.03R = 1191.4 J K- 1 mol- 1 I 

The difference between the experimental and calculated values is negligible, indicming that the residual 

emropy is negligible. 

P17.8 The vibrational temperature is defined by 

P17.10 

kfJv = hcV, 

so a vibration with Bv less than 1000 K has a wavenumber less than 

_ kev (1.381 x Jo-" J K- 1) x (IOOOK) 
v = hc = (6.626 x 10 34 Js) x (2.998 x JOIOems I) = 695

·
2

em-l 

There are seven such wavenumbers listed among those for C6o: two T1u. a T2u. a Gu. and three Hu. The 

number of modes involved, vy, must take into account the degeneracy of these vibrmional energies 

v~ = 2(3) + 1(3) + 1(4) + 3(5) =~ 

The molar heat capacity of a molecule is roughly 

Cv.m = ~(3 + v~ + 2vy)R [17.35} = ~(3 + 3 + 2 x 28)R = 3IR = 31(8.3145 J mol-l K- 1
) 

= 1258 J mol- 1 K- 1 I 

<t (CHD,)q0 (DC!) 
K = 111 

• m e-flt>.Eo [17.54; NA factors cancel] 
lf~1 (CD4)q~1 (HC\) 

Use parlilion funcLion expressions from Table 17.3. The raLio of Lranslational partition functions is 

q;';,CCHD,)q;';,(DCI) (M(CHD,)M(DCIJ)'I' ( 19.06 X 37.46)'1
2 

~'=:::-'-'~:-:-::c:c- = = = 0.964 
qJ,ccD.JqJ,CHCIJ MCCD,JMCHCI) 20.01 x 36.46 

The ralio of rotational partilion functions is 

cJ"(CHD,)c/(DCI) 

qR (CD.)qR(HCI) 

a (CD,) (B(CD4) (em -l )312 B(HCI) (em -l 

a (CHD3) (A(CHD,)B(CHD,)2(cm-3) 112B(DCI)(cm-l 

12 2.63312 X I 0.59 
= - X ? If? = 6.24 

3 (2.63 X 3.28-) - X 5.445 
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The ratio of vibrational partition functions (call it Q for convenience below) is 

Q = qv (CHD,)qv (DCI) 

qV (CD4)qV (HCI) 

q(2993)q(2142)q( I 003)' q( 1291 )2q( I 036)2q(2145) 

q(21 09)q( I 092)2q(2259)3q(996)3q(2991) 

where q(x) = 1- e-l.438Sx/(T/K). 

We also require 6.£o. which is equal to the difference in zero point energies 

t!.Eo I - = -((2993 + 2142 + 3 X 1003 + 2 X 1291 + 2 X 1036 + 2145) 
lie 2 

- (2109 + 2 X 1092 + 3 X 2259 + 3 X 996 + 2991)} Cffi-l 

= -1053cm- 1 

So the exponent in the energy term is 

t!.Eo lie t!.Eo I 
-{Jt!.Eo = --- = -- X-- X-= 

kT k lie T 
-"1.--4 3'-'8"'8'-"x--('-----1'-"0=-'5 3--) = + _15_15 

T/K T/K 

Hence, 

K = 0.964 X 6.24 X Qe+I5I5/(T I K) = 6.02Qe+I5I5/(T/KI 

We can now evaluate K(on a computer), and obtain the following values 

T/K 
K 

300 
945 

400 
273 

500 
132 

600 
83 

The values of K are plotled in Figure 17.3. 
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Solutions to theoretical problems 

A Sackur-Tetrode type of equation describes the translational entropy of the gas. Here 

T T T . T 2rrm 
( ) 

1/2 

q=qxqy wuhq_,= {3/P X[l6.15] 

where X is the length of the surface. Therefore, 

T (2nm) 2rrma q - -- XY- -- a = XY 
- {311 2 - {3h 2 ' 

Um- Um(O) =- NA (aq) =RT [orbyequipartition] 
q a{J 

Um- Um(O) [ q] 
Sm = + R(ln qm - InN A + I) qm = -

T " 

= R + R In ( ~~) = R In e::m) 

Call this molar entropy of the mobile two-dimensional film Sm2· The molar entropy of condensation is 
the difference between this entropy and that of a (three-dimensional) gas: 

The three-dimensional value is given by the Sackur-Tetrode equation 

{ 
3/' } 512 (2rrm) - Vm Sm=Rln e -

2
- --

h {3 NA 

e
2

(2rrm/h
2

{3) X (am/NA) {(am) ( h
2

{3 ) 
112

} So IISm =Rln = Rln - x --
e5i2(2rrm/h2{3)3i2 x (Vm/NA) Vm 2rrme 

Begin with the partition function of an oscillator (Table 17 .3) 

q = I- e-.r' x = IJv = hcvf3 = liwf3 
T 

Expressions for internal energy and other thermodynamic functions are in Table 17 .4. 

U-U(O)=-- - =-N(l-e )-(1-e ) N (aq) -x ct -x -1 

q a{J v d{J 

Cv = - = -k{J - [17.3la] = -k{J /iw-(au) ,au 2 au 
aT v a{J ax 

- k liw 2N - kN I e-' l I x'e' l 
- ({3 ) (e-'- I)' - (e-'- J)2 
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U- U(O) Nkxe-x 
S= +nRlnq = --- -Nkln(l-e-") 

T I- e-x 

=INk (h -In(!- e-')) I 
A - A(O) = G- G(O) = -nRT In q =I NkT In( I - c')) 

The functions are plotted in Figure 17.4. 
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For a linear molecule 81 = 21 + I and t:J = hc81(J + I) [Sections !3.5(c) and d)]. Therefore, 

NJ ex (21 + l)e-hcBl(l+l)/kT 
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(b) 1,,., occurs when dN1 fd1 = 0. 

dNJ = /',/_~ 1(21+ l)e-('"""''""")) =0 
d1 q d1 

2- (21m,+ I)('~:) (21m"'+ I)= 0 

(
2kT) 

1
1
2 

21max + I = lzcB 

( 
kT ) 1/2 = 

lmax = 2hcB 
I 

2 

(c) lmax :::::: 3 because the R branch 1 = 3 ---+ 4 transition has the least transmittance. Solving the 
previous equation forT provides the desired temperature estimate. 

"' hcB 2 
T- -z,;-(21""' +I) 

(6.626 x 10-34 J s) x (3.000 x 108 m s- 1) x (10.593cm- 1) x ( IO~cm) x (7)2 

~----------------~~~~~~-.----~----~---
2(1.38066 x J0-23JK I) 

(d) For a spherical rotor 81 = (21 + 1)2 and e1 = hcB1(J + I) [Sections 13.5(c) and (d)]. Therefore 

I max occurs when dN1 fdJ = 0. 

- = -- (21 + 1)2e ---r;-- = 0 dNj N d I -("'·H)(J+") l 
d1 q d1 

2 (hcB) 2(21"wx +I) X 2- (21m,+ I) kT (21m,+ I)= 0 

Divide both sides by 21max + 1: 

4- (21m,+ 1)2 (hcB) = 0 
kT 

(
4kT) 1/2 

21max+l=hcB 

( 
kT) 1/2 

lmax = hcB 2 
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(a) 
N aq N" .,. NkT t:ill]q) U- U(O) = --- = -- L.,e·e-"' = -q = nRT -
q a{J q ' q q 

Cv =(au) = a{J (au) = _, ~ ('!_ "e·e-P'') aT v aT a{J v kT2 a{J q L., ' 
J 

( N ) [I L , _,, I ( aq) L -"'] = - x - s-:-e "1 +- - e·e " 1 

kT2 q . 1 q2 a{J . ' 
J J 

_ ( N ) [k'T
2q k

2
T

2 
. 2] - -, X -----q 

kT- q q2 

U- U(O) ( q ) (q eq) 
S = T + nR In N + I = nR q + In N 

kT 
(b) At5000K,- = 3475cm- 1 We form the sums 

he 

q = L e-f3ei = 1 + e-21870(3475 + Je-21870/3475 + ... = I.Ol 67 
j 

. ~ s; _ar:- he '""'_ _ar:. 
q = L.., kT e I' J = kT L.., v;e " ' 

j j 

= (-'-) x [0 + 21850e-21850i 3475 + 3 x 21870e-21870i 3475 + · · ·} = 0.1057 
3475 

q = L (;~ )' e-P'i = (:; )' L v}e-P'i 
J J 

= (-
1
-)

2 

x [0 + 218502 e-2185013475 + 3 x 218702 e-2187013475 + · .. } = 0.6719 
3475 

The electronic contribution to the molar constant-volume heat capacity is 

= 8.314 J K-
1 

mol-
1 

x { ~:~~!~ -C:~~!~) 
2

} = 15.41 J K-
1 

mol-
1 I 
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The derivation of 

kN{J 2 

Cv = -
2

-r;({J) 

given in P 17.19 is completely general. That is, it makes no use of the fact that the energies and degen

eracies in question were those of a linear rotor. The derivation and therefore the result can apply equally 
well to a nonlinear rotor, to electronic energy levels, or to the vibrational energy levels involved in P 17 .20. 

To evaluate contributions of individual excitations to the heat capacity, we re-write {(/3) in notation 
associated with vibrational energy levels 

where the levels are nondegenerate, or at least are treated as such because vibrational modes are treated 

one by one. The energy levels are 

e(v) = hcvv = l!vkv so {Je(v) = l!vvjT. 

The total heat capacity and the contributions of several transitions are plotted in Figure 17 .5. For vibra

tion, one can compute q and the total Cv/R analytically, using expressions from Tables 17.3 and 17.5 
respectively: 

; 
r,J 

q= 1-e Ov/T and 

~ total 

v 0.8 

0.2 

I 
L 0.1 

! .A~~~---
/ __ /~_-: 

//-"". ~"'"'··~ - 0.3 ::-------- (1.2)x5 --- ·::.·:.·?--::--:::.-:? 

0.6 

0.4 

0 

0 0.5 1.5 2 

_ (yRT)'I' 
Cs- M 

T/9 

Cp.m 
y = c· Cp.m = Cv.m +R 

V.m 

Figure 17.5 
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(a) 

(b) 
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Cv.m = ,}R(3 + "R + 2v~) = ,}R(3 + 2) = ~R - - -
Cp.m = ~R+R = ~R 

7 
y =- = 1.40; 

5 
hence _ ( 1.40RT) '12 

Cs- M 

. _ (1.40RT)'I' 
Cs- M 

I 5 
Cv.m = 2R(3 + 2) = 

2
R, y = 1.40, 

(c) Cv,m = tR(3 + 3) = 3R 

Cp,m = 3R + R = 4R, c = (4RT) 1/2 

' 3M 

For air, M ""29g mol- 1, T ""298 K, y = 1.40 

(1.40)x(2.48kJmol- 1
) 1 -II 

( )

IP 

Cs = = 350m s 
. 29 X I 0 3 mol 1 

Solutions to applications 

(a) The heat capacity is 

Cv = -k{J2 (a£) [17.31a]. 
a{J v 

First express E as a function of {3: 

Cv (a£) 
Hence -kfJ2 = a{J v 

Collecting terms over a common denominator yields 

Multiply through by e''lkT je2,/kL 

The desired expression uses molar rather than molecular quantities: 
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R(e /RT) 2e'm/R1' 
so c - --cc'cc"':--::'-"'"'"'.-v.rn - (I + et:rnfHT)2 

(b) It is convenient to plot Cv.m (in units of R) as a function of x where x = kT fc = RT fc 111 • 

Re-l/.r 

'" ' L; 

Cv - -,-:-:--;-;:ceo 
.m- x2(J + e lfx)2 

The molar heat capacity is plotted in Figure 17.6. 
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Figure 17.6 

(c) The above plot indicates a maximum heat capacity at about 0.43 Rat value for x of about 0.4. The 

X- Y trace feature of mathematical software may be used to find the more accurate value for x 

of 0.417. A formula for the maximum is determined by the criterion that dCv,m/dx = 0 at the 

maximum. 

d(Cv,m/R) d l e-l/x l 
dx = dx x'(l + e l/x)2 

e-lfx 2e-lf.r 

x4(J + e l/.r)2 x3(1 + e 1/x)2 

e-1/.r 
= (1-e-l/x -2r(l +e-1/.'')-ze-llx) 

x•(l + e 1/x)l 

e-1~ . ...,.,.,--......,-;-:::o (I - 2x- (I + 2x)e-l/.o) 
x•(l + e 1/x)l 

Thus, cl'.m is a maximum when X = Xmax satisfies the equation 

I - 2rmax- (I+ 2Xmax)e-l/Xnm = 0 

This is a Lranscendental equation so it is necessary to solve for Xmax with a numerical method. 

Xrnax may be numerically determined with the numeric solver application of the modern scientific 

calculator. The Given/Find solve block of Mathcad can be used or a graph containing plots of 

f(x) = I - x and g(x) = (I + 2x)e-l/x may be prepared. The intercept ofj(x) and g(x) determines 
Xmax· Alternatively, expand e-l/x in a Taylor series around x = 0.4 within the above equation, 
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discard second order and higher terms (linearize), and solve for x. All methods yield X max ~ 0.417. 
The following presents a Mathcad solution 

X :=2 
Given 
X= 0.417 

Estimate for following Solve Block 
1 -2 ·X- (1 + 2 ·X)· e-1/X = 0 X> 0 X:= Find(X) 

The standard molar Gibbs energy is given by 

Translation (see Table 17.3 for all partition functions): 

= 2.561 X 10-l X (200.0)5/ 2 X (102.9)]/l = 1.512 X 107 

Rotation of a nonlinear molecule: 

R = ..'. (kT)'I' (...!'.._) ,,, = 1.0270 X (T /K)3
i
2 

q a he ABC a (ABC(cm-l)l/2 

= _1._02_7_0 X =-=-:-c:-::--:-'[:C.(2:::0:,:0,::. O:,:).,:.x~(:::2::.:. 9~9.;.8~x:.,:.::1 o:,-' 
0
_c::m::..:.s -,...'.c.> 1,_,',..,'',..,--~~ 

2 ((13109.4) X (2409.8) X (2139.7) X (106s-l)l(cm ljl/2 = 
2

·
900 

X 
104 

Vibration 

v I I 
q, = ___ ( ___ 1_.4:....38-8-(v-f-cm--~,)-) = (-1.4388(753)) = I.004 

I - exp 1 - exp 
T(K 200.0 

I 
q'f = --~(~-~1-.4'""3""'88'"'(754'"'2,-) )' = 1.021 

1 - exp 200.0 

1 
qj = -----.,(-_.,:1~.4""'38"'8'"'(3""'1'""077"")) = 1.120 

1 - exp 200.0 

1 
q X = ------,(-_.,:1~.4"""3 8"'8'"'< ""12"'7"'"'> ) = I. 6 7 0 

1 - exp 200.0 

1 
q'f = ------,(--~1:...,.4738"'8'"'( 6,.-4"'6"'"') ) = l.O 10 

1 - exp 200.0 
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I 
q~ = -------,(~_--,1....,.4""3"'88'"'(7 41"'9c--c-)) = 1.052 

1 - exp 200.0 

6 

qv = fl q'( = 2.037 
i=l 

Putting it all together yields 

c;;.- c;;,(O) = (8.3145 1 mol- 1 K- 1) x (200.0K) 

X ln((l.512 X 107 ) X (2.900 X 104
) X (2.037) X (I)] 

c;;.- c;;.(o) = 4.576 x 104 J mol- 1 = 145.76 kJ mol- 1 I 
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18 Molecular interactions 

Answers to discussion questions 

When the applied field changes direction slowly, the permanent dipole moment has time to reorientate
the whole molecule rotates into a new direction-and follow the field. However, when the frequency 
of the field is high, a molecule cannot change direction fast enough to follow the change in direction of 

the applied field and the dipole moment then makes no contribution to the polarization of the sample. 
Because a molecule takes about I ps to turn through about 1 radian in a fluid, the loss of this contribution 

to the polarization occurs when measurements are made at frequencies greater than about I 0 11 Hz (in the 
microwave region). We say that the orientation polarization, the polarization arising from the permanent 

dipole moments, is lost at such high frequencies. 

The next contribution to the polarization to be lost as the frequency is raised is the distortion polarization, 

the polarization that arises from the distortion of the positions of the nuclei by the applied field. The 

molecule is bent and stretched by the applied field, and the molecular dipole moment changes accord
ingly. The time taken for a molecule to bend is approximately the inverse of the molecular vibrational 

frequency, so the distortion polarization disappears when the frequency of the radiation is increased 
through the infrared. The disappearance of polarization occurs in stages: as shown in JustificaTion 18.3, 

each successive stage occurs as the incident frequency rises above the frequency of a particular mode of 

vibration. 

At even higher frequencies, in the visible region, only the electrons are mobile enough to respond to the 

rapidly changing direction of the applied field. The polarization that remains is now due entirely to the 
distortion of the electron distribution, and the surviving contribution to the molecular polarizability is 

called the electronic polarizability. 

There are three van derWaals type interactions that depend upon distance as 1!r6; they are the Keesom 

interaction between rotating permanent dipoles, the permanent-dipole-induced-dipole-interaction, and 
the induced-dipole-induced-dipole, or London dispersion, interaction. In each case, we can visualize the 

distance dependence of the potential energy as arising from the l!r3 dependence of the field (and hence 
the magnitude of the induced dipole) and the l/r3 dependence of the potential energy of interaction of 

the dipoles (either permanent or induced). 

The increase in entropy of a solution when hydrophobic molecules or groups in molecules cluster together 

and reduce their structural demands on the solvent (water) is the origin of the hydrophobic interaction 

that tends to stabilize clustering of hydrophobic groups in solution. A manifestation of the hydrophobic 
interaction is the clustering together of hydrophobic groups in biological macromolecules. For example, 
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the side chains of amino acids that are used to form the polypeptide chains of proteins are hydrophobic, 
and the hydrophobic interaction is a major contributor to the tertiary structure of polypeptides. At first 

thought, this clustering would seem to be a nonspontaneous process as the clustering of the solute results 
in a decrease in emropy of the solute. However, the clustering of the solute results in greater freedom 

of movement of the solvent molecules and an accompanying increase in disorder and emropy of the 

solvent. The total entropy of the system has increased and the process is spontaneous. 

Solutions to exercises 

E18.1(b) A molecule that has a center of symmetry cannot be polar. SO,(DJh) and XeF4(D4h) cannot be polar. 

I SF41 (see-saw, C2v) may be polar. 

E18.2(b) 
, , I(' 

I'= (I']+ IL2 + 21LtiL2 cosO) - [18.2a] 

= [(1.5)2 + (0.80)2 + (2) x (1.5) x (0.80) x (cos 109.5°)] 1/2 0 = ~ 

E18.3(b) The components of the dipole moment vector are 

l'x = LqiXi = (4e) x (0) + (-2e) x (162pm) 

+ (-2e) x (143pm) x (cos30°) = (-572pm)e 

and 1'_,. = L qiJi = (4e) x (0) + ( -2e) x (0) + ( -2e) x (143 pm) x (sin 30°) = ( -143 pm)e 

The magnitude is 

I' = (I'~+!'~) 112 = (( -570)2 + ( -143)2) 112 pm e = (590 pm)e 

= (590 x w- 12 m) x ( 1.602 x w- 19 C) = 19.45 x w- 29 c m I 

I' -143pme I I and the direction is() = tan- 1 ___l_ = tan- 1 -,=-'-- ;;;: 194.0° from the x-ax1s (I.e. \4.0° below the 
l'x -572 pm e 

negative x-axis). 

E18.4{b) The molar polarization depends on the polarizability through 

P--a-NA ( 1'
2 

) 
"'- 3eo + 3kT 

This is a linear equation in r- 1 with slope 

NAJl-
2 

m=--
9eok (

9eokm) 
112 

SO 1' = ----;;;-;- = (4.275 X w-29 c m) X (mj(m3 mol-l K)) 1i 2 

and withy-intercept 
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Since the molar polarization is linearly dependent on T- 1, we can obtain the slope m and the intercept b 

(75.74- 71.43) cm3 mol- 1 
3 3 1 

(320.0K) 1_(42 1.7 K) 1 =5.72x 10 em mol- K 

and b = Pm- mT- 1 = 75.74cm3 mol-l - (5.72 x 103 cm3 mol-l K) x (320.0 K)- 1 

= 57.9cm3 mol- 1 

It follows that 

ll. = (4.275 X w-29 c m) X (5.72 X w-3 )
112 = 13.23 X w-30 c m I 

and 

"= (4.411 X w-35 C2 m2 r 1
) X (57.9 X w-6) = 12.55 X w-39 c2 m2 r 1 I 

E18.5(b) The relative permittivity is related to the molar polarization through 

2C+ I Er- 1 _ pPm _ C 
e,+2- M = 

so Er = ---, 
1-C 

(1.92gcm-3) x (32.!6cm3 mo!- 1) c = = 0.726 
85.0gmol 1 

2 X (0.726) + I ro;;:;l 
e,= I -0.726 =~ 

E18.6(b) The induced dipole moment is 

J.l..* =ae =4JTeoa'e 

=4rr(8.854X JO-I2riC2 m-l) X (2.22 X J0-30 m3) X (J5.0x J03Vm- 1) 

= 13.71 X w-36 c m I 

E18.7(b) If the pennanent dipole moment is negligible, the polarizability can be computed from the molar 

polarization 

3eoPm 
so Ci=-

NA 

and the molar polarization from the refractive index 

pPm Er - 1 n~ - l 
--=--=-,--
M Er + 2 nr + 2 

3eoM ("; - I) so ct= -- ---
NAP n;+z 

a= 3 X (8.854 X J0- 12 r 1 C2 m-l) X (65.5gmoJ- 1
) X (1.6222 -j) 

(6.022 X J023 mol I) X (2.99 X J06 g m-3) 1.6222 + 2 

= 13.40 X w-•o C2 m2 J- 1 I 
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E18.8(b) The solution to Exercise 18.7(a) showed that 

(
3£oM) ("i-I) 01- -- X --

- pNA II~+ 2 or 01'= ( 4:;J x c:::~) 
which may be solved for 11r to yield 

(
/3' + 201') '12 

, 3M 
fir = with {3 = --

{3'- a' 4rrpNA 

{3' = _____ ..:.(3..:.)-;X--'-(7_2-:.3-'g'-m_o_J_-..:.1 ) __ -;;-:----,- = 3 314 X J0-29 ffi3 
(4rr)x(0.865x J06 gm-3)x(6.022x J023mol 1) · 

(
33.14+2 X 2.2)I/Z ,.-;-;;-] 

1lr = =L..!...:...!..Q 
33.14- 2.2 

E18.9(b) The relative permittivity is related to the molar polarization through 

£, - I pPm 2C + I -- = -- = C SO E:r = --
£, +2 M I- C 

The molar polarization depends on the polarizability through 

pNA ( , tJ.
2

) so C = -- 4rreoa +-
3ooM 3kT 

(1491 kgm-3) x (6.022 x 1023 moi- 1) c = __ __:_~o....,.._,c..__: _____ _,c.. __ .. 

3(8.854 x I0- 12 J- 1 C2 m- 1) x (157.Gl x I0-3 kgmol 1) 

X ( 4rr(8.854 X IO-I2 rl C2 m-l) X (1.5 X 10-29 m3) 

(5.17 x I0-3°Cm)2 ) 
+3(1.381 X 10 23JK 1) x (298K) 

c = 0.83 
2(0.83) + I 1.<1

6 and Cr = =~ 
I -0.83 

M 18.02gmol- 1 
-5 3 -l 

Vm = - = 3 3 = 1.803 x 10 m mol 
p 999.4x!Ogm 

E18.10(b) 

2yVm 2(7.275 X I0-2Nm- 1) x (1.803 X I0-5 m3 moi- 1) 

rRT (20.0 x 10-9m) X (8.314JK- 1 mol 1) x (308.2K) 

=5.!!9x 10-2 

p = (5.623 kPa) e0
·
05

"
9 = 15.92 kPa I 

E18.11(b) y = ~pgilr= ~ (o.9956gcm-3) x (9.807ms-2) x (9.11 x 10-2m) 

( ) (
IOOOkcrm-3) 

X 0.16 X lO-J ffi X gcr: J 

=17.12 x I0-2Nm-'l 
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E18.12(b) 
. _ 2y _ (2) x (22.39 x 10-3 N m- 1

) -I 5 I 
"'" -p0"'- -[18.38]- 7 -2.04 x 10 Pa 

r 2.20 x 10 m 

Solutions to problems 

Solutions to numerical problems 

P18.2 The energy of the dipole -J.qS. To flip it over requires a change in energy of 2p.JC. This will occur 
when the energy of interaction of the dipole with the induced dipole of the Ar alOm equals 2f-1.JC. The 

magnitude of the dipole-induced-dipole interaction is 

P18.4 

' ' ,ret 
V = 4 [18.24] = 2tLtE [after flipping over] 

7r sor 

6 f.qet0 (6.17 x I0-3°Cm) x (1.66 x Io-30 m3 ) 
r =--= 

2rrEoE (2rr) x (8.854 x 10 12 J 1 C' m 1) x ( 1.0 x 103 V m 1) 

= 1.84 X 10-S::!. m6 

r = 2.4 X I o-9 m = 12.4 nm I 

COMMENT. This distance is about 24 times the radius of the Ar atom. 

(M) (''-!) P--x--
m- p Sr + 2 

and ~ ' ~~ ' Pm = -NAet + -- [18.14and 18.15 withet = 4nEoet] 
3 9eokT 

The data have been corrected for the variation in methanol density, so use p = 0.791 g cm-3 for all 
entries. Obtain J.1 and a' from the liquid range (8 > -95 °C) results, but note that some molecular 
rOlation occurs even below the freezing poim (thus the -110 °C value is close to the -80 °C value). 

Draw up the following table using M = 32.0 g mol- 1. 

ere -80 -50 -20 0 20 

T/K 193 223 253 273 293 

1000 
5.18 4.48 

TfK 
3.95 3.66 3.41 

E, 57 49 42 38 34 

Sr- I 

Sr + 2 
0.949 0.941 0.932 0.925 0.917 

P111 /(cm3 mol- 1) 38.4 38. I 37.7 37.4 37.1 

P111 is plolted against 1/T in Figure 18.1. 

The extrapolated intercept at 1/T = 0 is 34.8 (not shown in the flgure) and the slope is 721 (from a 
least-squares analysis). IL follows that 

3P,(at intercept) (3) x (35.0cm3 mol- 1
) 1 1 

a'= 
1 

=1.38xi0-23 cm3 
4rrNA (4rr) x (6.022 x 1023 mol ) 

/L = (1.282 x 10-2 D) x (721) 1/ 2 [from Problem 18.3] =10.34DI 
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1000 T/K 
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5.2 

Figure 18.1 

The jump in Cr which occurs below the melting temperature suggests that the molecules can rotate while 

the sample is still solid. 

41T I NAJ1. 2 
I 

P111 = -NA(x + -- [18.15, with a= 4rreoa] 
3 9sokT 

Draw up the following table 

TjK 384.3 420.1 444.7 484.1 522.0 

1000/(T/K) 2.602 2.380 2.249 2.066 1.916 
P 111 /(cm3 mol- 1) 57.4 53.5 50.1 46.8 43.1 

The points are plotled in Figure 18.2. 

The extrapolated (least-squares) intercept is 3.44 cm3 mol- 1; the slope is 2.084 x I 04 . 

J1. = (1.282 x 10-2 D) x (slope) 11' [Problem 18.3] = 11.85 D I 

, 3P111 (atintercept) (3)x(3.44cm3 mol- 1
) I -1-1 1 1 

a = = = . 1.36 x I 0 - cnr . 
4rrNA (47r) x (6.022 x !023 mol 1) 

COMMENT. The agreement of the value of 11 with Table 18.1 is exact, but the polarizability volumes differ by 

about 8 percent. 

P18.8 An electric dipole moment may be considered as charge +q and -q separated by a distance I such that 

11. = ql so 
( 1.77 D) X (3.336 X w-JO c m/D) - '" 

q = fl/f = I' = 1.97 X !0 - C 
299x 10 -m 

In units of the electron charge 

qje=(1.97x IO-'"C);(l.602x w-' 9 C)=Io.Iz31 
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65 

60 

45 

40 
1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 

1000 K 
-T- Figure 18.2 

Solutions to theoretical problems 

(a) Consider the arrangement shown in Figure 18.3(a). There are a total of 3 x 3 = 9 Coulombic 
interactions at the distances shown. The total potential energy of interaction of the two quadrupoles 
is 

v---x ----+-- -2 ----+--q1q2 [(I 2 I ) ( 1 2 1 ) 
- 4neo r r-l r-21 r+l r r-l 

+C~2/-r!/+~)] 
=--X 1---+-- -2 ---2+--q, qz [( 2 I ) ( 1 1 ) 

4rr Eor I - A 1 - 2A 1 + A 1 - A 

+ (-
1-- -2 

+ 1)] (A= ~ « 1) 1+2A I+A r 

~------,-------~ Figure 18.3(a) 

Expand each term using 

1 . 2 .3 4 --=1-x+x -..\ +x - .. 
l+x 

and keep up to A 4 (the preceding terms cancel). The result is 
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Define the quadrupole moments of the two distributions as 

and hence obtain V = 
6

Q 1 Q, x _I_ 
rr eo r5 

(b) Consider Figure l8.3(b). There are three different distances, r, r', and r". Three interactions are at 
r, four at r', and two at r". 

q, 

-2ql 

q, 

r" = (r2 + 4/2) 112 = r(I + 4A2) 1i 2 ""r(I + 2A2 - 2A4 + · ·.) 

0 
r 

0 q, 

I ! t I 
0 0 -2q2 l<<r 

! ! I 
0 0 q, Figure 18.3(b) 

V = q,q, X [(~-~+_I_) - 2 (~- ~ + ~) + (_I_ - ~ + ~)] 
4rr eo r r' r" r' r r' r" r' r 

- -- X - - - + - - -- X 3 - 4- + -(
2q,qz) (3 4 I) (2q,q,) ( r r) 

- 4rreo r r' r" - 4rreor r' r" 

Substituting for r' and r" in terms of rand A from above we obtain (dropping terms beyond A 4 ) 

V = V0 (3 - 4 
+ ::--:-::.,..;,

1 -::::-:;-:-) 
(1 + ¥- ~n (I +2A'- 2A4) 

The terms in A0 and A2 cancel leaving 

[
Vo = 2q,qz J 

4rreor 
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The dimers should have a zero dipole moment. The strong molecular interactions in the pure liquid 

probably break up the dimers and produce hydrogen~bonded groups of molecules with a chain-like 

structure. In very dilute benzene solutions. the molecules should behave much like those in the gas 

and should tend to form planar dirners. Hence the relative permittivity I should decrease I as the dilution 

increases. 

An 'exponential-6' Lennard-Janes potential has the form 

and is sketched in Figure 18.4. 

The minimum occurs where 

-=4e -e- +- =0 dV (-A cfa 6a 6
) 

dr a ,-7 

which occurs at the solution of 

a1 A -rja 
- =-e 
,-7 6 

Solve this equation numerically. As an example, when A= a= I, a minimum occurs at r = ~ 

v 

-I ,, 

Refer to Figure 18.5(a). 

Figure 18.4 

The scattering angle is() = rr - 2a if specular reflection occurs in the collision (angle of impact equal 

to angle of departure from the surface). Forb:<: R1 + Rz, sinct = bf(R, + R,). 

g = { ~- 2arcsin (R,!R,) b :': R, + R2 

b > R, + R2 
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Figure 18.S(a) 

0.4 0.8 

The function is ploued in the Fig 18.5(b). 
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1.2 

Figure 18.S(b) 

The interaction is a dipole-induced-dipole interaction. The energy is given by eqn 18.24: 

v = _ flT"; = [(2.7D)(3.336 x lo- 3°CmD- 1)] 2 (t.04 x w-'•m') 
4rreor6 4rr(8.854 x 10 12 J I C' m 1 )(4.0 x J0-9 m)6 

V = 1-1.8 X J0-27 J = -1.1 X l0-3 Jmol-l 1. 

COMMENT. This value seems exceedingly small. The distance suggested in the problem may be too large 

compared to typical values. 

Solutions to applications 

(a) The table displays computed electrostatic charges (semi-empirical, PM3 level, PC Spartan) of 

the DNA bases, modified by addition of a methyl group to the position at which the base binds 
to the DNA backbone. (That is, R = methyl for the computations displayed, but R =DNA backbone 
in DNA.) See the first sel of structures for numbering. 

(b) and (c) On purely electrostatic grounds, one would expect the most positively charged hydrogen 
atoms of one molecule to bind to the most negatively charged atoms of another. The figure below 
depicts hydrogen atoms as black lines, and has thicker gray lines for the most positively charged 
hydrogens (those with a charge of at least 0.200); they also happen to be the hydrogens bound to elec
tronegative atoms. The figure also has light gray type for the atoms with the greatest negative charges 
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(more negative than -0.400), with a gray ball on the most negative carbon atoms. In principle, then, 
any of the thick gray lines of one molecule can line up next to any of the atoms in light gray type of 
its bonding partner. In practice, the carbon atoms are not good binding sites for steric reasons. 

0 0 
NH2 II 

NH, 

R-Adcninc 

:rCH
3 'C c~ N 1--..;: N HN <'8 I 9 2 NH 

7<': 2 ,0l .jJ 6 5 A 
oY N 

N 4 h 
N I N NH 2 

N I R-Thymine N 0 
I R R-Guanine I R-Cytosine R R 

R 

R-Adenine R-Thymine R-Guanine R-Cytosine 

atom charge atom charge atom charge atom charge 

Cl 0.905 Cl 0.885 Cl 0.720 Cl 0.961 
amino N -0.656 OofCI -0.580 OofCI -0.524 amino N -0.709 
amino Ht 0.288 C2 -0.554 N2 -0.473 amino Ht 0.291 
N2 -0.914 C2 methyl C 0.180 HofH2 0.233 N2 -0.901 
C3 0.785 C2 methyl H -0.003 C3 0.794 C3 0.993 
HofC3 -0.020 C3 0.173 amino N -0.693 OofC3 -0.609 
N4 -0.835 HofC3 0.111 amino Ht 0.288 N4 -0.286 
C5 0.639 N4 -0.390 N4 -0.757 methyl C* 0.119 
N6 -0.183 N4 methyl C* 0.211 C5 0.325 methyl H*t 0.017 
methyl C* 0.113 N4 methyl H*t 0.002 N6 0.079 C5 0.205 
methyl H*t 0.022 C5 0.836 methyl C* -0.008 HofC5 0.103 
C7 0.320 OofC5 -0.596 methyl H*t 0.043 C6 -0.684 
HofC7 0.056 N6 -0.540 C7 0.130 HofC6 0.174 
N8 -0.584 HofN6 0.264 HofC7 0.086 
C9 -0.268 N8 -0.470 

C9 -0.146 

*part of R group, so nOl really available for hydrogen bonding in DNA 

t table displays average charge of atoms that are chemically equivalent 

{d) The naturally occurring pairs are shown below. These configurations are quite accessible sterically, 
and they have the further advantage of multiple hydrogen bonds. 

R-Adenine '-N/ 
0~ 

N N II R t: /N-yN, 

---{~ N~ ~-Thymine 
R 
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(e) See above 

(a) The hydrocarbons in question form a homologous series. They are straight-chain alkanes of the 

formula C,H2,1+2· orR -H where R = C,H2n+I· Draw up the following table: 

n 
rr 0.5 

2 

1.0 

3 
1.5 

4 

2.0 

5 
2.5 

The relationship here is evident by inspection: Ir 

hydrocarbon in question: 

rr = 7/2 = (II]. 

n/2, so we predict for the seven-carbon 

(b) The plot, shown in Figure 18.6, is consistent with a linear relationship, for R2 = 0.997 is close to 

unity. The best linear fit is: 

log K = -1.95 - 1.49rr, 

so J slope;:: -1.49J and I intercept= -1.95J. 

-1.0 ,.,.,~--,-~,.,--,-~-,---..---,~-

-1.5 ........ , ....... , ....... ,. ······<··· ..... , .. 

-2.0 ·······~·-·· ..... '.' -~-· . 

-2.5 · ....• 
-3.0 ·······-~··· ······! ....... ~ ......... ; ..... ·+·· 
-3.5 

0 

-4.0 '-'-'~--'--~.l_L.....J~.....L~..J.....~ 
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Figure 18.6 

(c) If we know rr for the substituent R = H, then we can use the linear SAR just derived. Our best 

estimate of rr can be obtained by considering the zero-carbon "alkane" H2, whose radical H ought 

to have a hydrophobicity constant rr = Of2 = 0. This value yields 

log K = -1.95 - 1.49(0) = -1.95 so K = 10-'-95 = lu2 x 10-2 1. 

Note: the assumption that R = H is part of the homologous series of straight-chain alkanes is a 

resonable but questionable one. 
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19 
Materials 1 : 
macromolecules and 
aggregates 

Answers to discussion questions 

First, try to understand why different molar mass averages might give different numerical values. Poly

mers are unlike small molecules in that all small molecules of the same species have nearly identical 

masses. Polymers vary widely in mass because they can vary in the number of monomeric units they 
contain. Depending on how a polymer is synthesized and purified, it is entirely possible for one macro
molecule to contain 2 monomer units and another 100. We call a polymer sample polydisperse if there 
is a large variation in mass among the molecules of the sample; conversely, a sample is monodisperse if 

its range of masses is narrow. 

Even for small molecules, the molar mass is an average (over isotopic variants); however, the details 

of the averaging process make a negligible difference when the distribution of molar masses is narrow. 

But the different averages can give significantly different answers for highly polydisperse samples. Why 
should experiments yield one average or another? 

The differences in averages are in the weighting factors. We see that the weighting factor for M 11 is 
the number of molecules that have a particular mass and (from eqn 19.2) that the weighting factor in 

M w is the mass fraction of a sample that has a particular mass. Different measurement techniques yield 

different weighting factors because they are sensitive LO different factors (or, more accurately, different 
combinations of factors). The intensity of a mass spectrometry peak, for instance, is proportional to 

the number of molecules of a given mass. Some techniques, like light scattering, are more sensitive to 
the size (volume) and shape of particles, and some, like sedimentation, are more sensitive to the mass. 

(Discussions in the text reveal, however, that the measurements capture a complicated function of size, 
shape, mass, and number.) 

Experimental techniques for the study ofpolydisperse polymer solutions are sensitive to a wide range of 

properties. Osmometry, measuring a colligative property, is sensitive to the number of molecules N; that 
have molar mass M,. Consequently, average osmotic properties depend upon the number average molar 

mass. Light scattering depends upon molecular size and shape, which indirectly depend upon mass, so 

weight average molar mass becomes important. Other mass averages become important when the tech
nique is sensitive to intermolecular attractions and repulsions, molecular entanglements, gravitational 

and centrifuge effects. 

(a) 6.5 is the change in conformational entropy of a random coil of a polymer chain. It is the statist

ical entropy arising from the arrangement of bonds, when a coil containing N bonds of length I 
is stretched or compressed by nl, where 11 is a numerical factor giving the amount of stretching 

in units of I. The amount of stretching relative to the number of monomer units in the chain 

isl'=nfN. 
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(b) Rrm~ is one of several measures of the size of a random coil. For a polymer of N monomer units 

each of length/, the root mean square separation, Rnns. is a measure of the average separation of the 
ends of a random coil. his the square root of the average value of R2 , calculated by weighting each 

possible value of R1 with the probability that R occurs. 

(c) Rg. the radius of gyration, is another measure of the size of a random coil. It is the radius of a thin 
hollow spherical shell of the same mass and moment of inertia as the polymer molecule. 

All of these expressions are derived for the freely jointed random coil model of polymer chains which is 

the simplest possibility for the conformation of identical units not capable of forming hydrogen bonds 
or any other type of specific bond. In this model, any bond is free to make any angle with respect 

lO the preceding one (Figure 19.15 of the text). We assume that the residues occupy zero volume, so 
different parts of the chain can occupy the same region of space. We also assume in the derivation of 

the expression for the probability of the ends of the chain being a distance nl apart, that the chain is 
compact in the sense that 11 « N. This model is obviously an oversimplification because a bond is 

actually constrained to a cone of angles around a direction defined by its neighbor (Figure 19.16). In 
a hypothetical one-dimensional freely jointed chain all the residues lie in a straight line, and the angle 

between neighbors is either 0° or 180°. The residues in a three-dimensional freely jointed chain are not 

restricted to lie in a line or a plane. 

The random coil model ignores the role of the solvent: a poor solvent will tend to cause the coil to 

tighten; a good solvent does the opposite. Therefore, calculations based on this model are best regarded 
as lower bounds to the dimensions of a polymer in a good solvent and as an upper bound for a polymer 

in a poor solvent. The model is most reliable for a polymer in a bulk solid sample, where the coil is 
likely to have its natural dimensions. 

The formation of micelles is favored by the interaction between hydrocarbon tails and is opposed by 

charge repulsion of the polar groups which are placed close together at the micelle surface. As salt 
concentration is increased, the repulsion of head groups is reduced because their charges are partly 

shielded by the ions of the salt. This favors micelle formmion causing the micelles to be larger and the 

critical micelle concentration to be smaller. 

Using symbols that relate to surface properties (G(a), S(a), llJ(a), Ts, etc.) and the symbol c for the 
surfactant concentration in the bulk solution, 

dG = -SdT + Vdp + yda + LJ !LJdllJ (Justification 19.7) 

(as) -- (ay) (Maxwell Relationship) 
au T.f'."J - aT !'·"·"' 

This equation does not give a definitive indication of whether entropy changes are positive (increase) or 

negative (decrease) when surface area increases at the interface, or when Ts > 0, because the partial 

derivative of the surface tension with respect to temperature may be either positive or negative. However, 
the partial of the surface tension (also called interfacial tension) with respect to temperature is usually 

negmive so it seems most likely that the entropy of the interface increases when the surface area increases. 
The equation for the enthalpy change with surface changes is 

H=G+TS 

(aH) (ac) (as) (ay) - = - +T - =y-T -
aa T.p.IIJ Ba T,p,IIJ aa T.p,tlJ BT T.a.IIJ 
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Surface tension is always positive and the partial with respect to temperature is usually negative so the 
enthalpy change is positive for increasing surface area. 

Although it is difficult to find general statements concerning thermodynamic properties of surfactants 
ar solution interfaces, a surfactant that forms an ideal solution with one phase and is insoluble in the 

second phase is expected to exhibit a negative entropy change upon adsorbing at the solution interface. 
This would happen because the surfactant molecules are relatively disordered in the bulk solution. Upon 

adsorption, the molecules become se!fwaligned and ordered. With spontaneous adsorption the free energy 

of adsorption is negative and, since l:!.G = b:.H- T b:.S for an isothermal process, we expect that 6.actsH 

should be exothermic to the extent that b:.actsH < T b:.actsS < 0. 

Solutions to exercises 

E19.1(b) The number-average molar mass is (eqn 19.1) 

- _ I"' .. _ [3 x {62)+2 x {78)]kgmol-l 
M n - N ~ N,M, -

5 

The mass-average molar mass is (eqn 19.3) 

M 
_L:;N,Mf_3x(62)2 +2x(78)'k 

1
_ 1 _1

69
k 

1
_ 11 

w- - g mo - gmo L N,M, 3 X {62) + 2 x {78) 

E19.2(b) For a random coil. the radius of gyration is (19.33) 

Rg = I(N /6) 112 so N = 6(Rg//)2 = 6 x ( 18.9 nm/0.450 nm)2 = 11.06 x 104 1 

E19.3{b) (a) Osmometry gives the number-average molar mass, so 

Mn = NtMt + N2M2 = (m1 /M1) Mt + (m2/M2) M2 m1 + m2 
Nt + N, (nqjMJ) + (1112/M2) (nq/Mt) + (1112/M2) 

= ( 25 g ) :O( 75 g ) [assume !OOgofsolution] =l8.8kgmo!-
1

1 

22 kg moi- 1 22/3 kg mol 1 

(b) Light-scattering gives the mass-average molar mass, so 

_ m1M 1 + m2M, (25) x (22) + (75) x (22/3) -1 I -1 I 
Mw= = kgmol = llkg mol 

1111 +m2 25 + 75 

E19.4{b) The formula for the rotational correlation time is 

4na3
1] 

T=--
3kT 

ry(H,0.20'C) = 1.00 X w-3 kgm- 1 s- 1[CRC Handbook] 

4rr X (4.5 X 10-9 m)3 X 1.00 X 1Q-3 kgm-l S-l 
T= 

3 X 1.381 X 10 23 J K I X 293 K 



MATERIALS 1: MACROMOLECULES AND AGGREGATES 345 

E19.5(b) The effective mass of the particles is 

mcrr = bm =(I - pv5 )m [19.14] = m- PJJsm = vpp- vp = v(pp- p) 

where v is the particle volume and Pp is the particle density. Equating the forces 

m,rrrw2 =fs = 6nl}as [19.15.19.12] 

or v(pp- p)rw2 = ~rra3 (pp- p)rw2 = 6rr1}as 

Solving for s yields 

sz a
2

(p - p)o (a')' (p - p)z Thus, the relative rates of sedimentation are - = ; P - = - P • 
S) aj(Pp-P)r ar (pp-P)r 

The value of this ratio depends on the density of the solution. For example, in a dilute aqueous solution 
with p = l.Ol g cm-3 , the difference in polymer densities matters in that the factor involving densities 

is significantly different than I: 

::3_ = (8.4)2 (1.10- l.Ol)z = [EJ 
S) (1.18- l.Ql)r 

In a less dense organic solution, for example a dilute solution in octane with p = 0.71 gcm-3, the 

density difference has a smaller effect, for the factor involving densities is closer to 1: 

so '(1.10- 0.7l)z ~ 
...:: = (8.4)- =~ 
s 1 (1.18- 0.7l)r 

In both cases, the larger particle sediments faster. 

E19.6(b) The molar mass is related to the sedimentation constant through eqns 19.19 and 19.14: 

- SRT SRT 
M = - = .,..,..--...,....,. 

bD (I - pv,)D 

where we have assumed the data refer to aqueous solution at 298 K. 

- (7.46 X l0- 13 s) X (8.3145JK-l mol- 1) x (298K) 
M,=------~----,---~--~~~~-.--~--~~~~~~ 

[I- (1000kgm 3) X (8.01 X lQ-4 m3 kg 1)] x (7.72 x lQ-ll m2s-l) 

= 1120kgmol- 1 I 
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E19.7(b) See the solution to Exercise 19.5(b). In place of the centrifugal force mcrrr2 we have the gravitational 
force mcrrg. The rest of the analysis is similar, leading to 

2a2(pp - p)g (2) x (15.5 x 10-6 m)2 x (1250- 1000) kg m-3 x (9.81 m s-2) 
\'- -
• - 9ry - (9) X (8.9 X 1Q-4kgm 1s-l) 

=11.47 x 10-4 ms- 11 

E19.8(b) The molar mass is related to the sedimentation constant through eqns 19.19 and 19.14: 

- SRT SRT 
M = - = _.:.._:c--=

bD (I- pv,)D 

Assuming that the data refer to an aqueous solution, 

_ (5.1xl0-13s)x(8.3145JK- 1 mol- 1)x(293K) I I 
M = 1) = 56kgmol- 1 

[l-(0.997gcm 3 )x(0.721cmlg 1)]x(7.9x 10 11m2s . . 

E19.9(b) In a sedimentation experiment, the weight-average molar mass is given by (eqn 19.20) 

- 2RT c' 
Mw= ? 2 .,tn--=- so 

- ., ') ') 

c, _M_,~,~(r~,_-__ ,.~j)~b_w_-
ln- = -

(r;;- r 1 )bw- CJ 

This implies that 

Mwr2bw2 
Inc = + constant 

2RT 

CJ 2RT 

so the plot of In c versus r2 has a slope m equal to 

Mwbw2 - 2RTm 
m=~andMw= bw2 

- 2 x (8.3145JK- 1 mol- 1) x (293K) x (821cm-2) x (IOOcmm- 1) 2 

Mw= 3 1 
[1- (IOOOkgm ·) x (7.2 x 10-4 m3 kg )] x [(1080s- 1) x (2rr)J' 

=13.1 x I03 kgmol- 1 1 

E19.10(b) The centrifugal acceleration is 

a = rw2 so a I g = rw2 I g 

I 
(5.50cm) x [2rr x (1.32 x 103 s- 1)]

2 I 5 1 
a g = = 3.86 x 10 

(IOOcm m- 1) x (9.81 ms-2) 

E19.11(b) For a random coil, the rms separation is [19.31] 

Rnn, = N 112f = (1200) 1
/
2 x (1.125 nm) = \38.97 nm \ 

E19.12(b) Polypropylene is -(CH(CH,)CH,)-N, where N is given by 

N 
__ Mpolymcr = 174kgmol- 1 

3 ------~----~ = 4.13 X I 0 
Mmonomcr 42.1 X w-3 kg mol-l 
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The repeat length I is the length of two C-C bonds. The contour length is [ 19.30] 

R, = Nl = (4.13 X 103) X (2 X 1.53 X w- 10 m) = 11.26 X w-6 m I 

The rms seperation is [ 19.31] 

R,,.,, = IN 112 = (2 X 1.53 X w- 10 m) X (4.13 X 103
)

112 =11.97 X w-8 m I= 19.7nm 

Solutions to problems 

Solutions to numerical problems 

P19.2 From eqn 19.20, we can relate concentration ratios to the molar mass 

and hence 

( 

RTin (~) ) 

112 

lJ = ') ? 
2rr 2Mwb (r;- r;) 

1/' 

( 

(8.314JK- 1 mol- 1)x(298K)x(ln5) ) -

= 2rr 2 x (1 x I02 kgmol 1) x (1-0.75) x (7.02 -5.02) x w-4 m2 

= 58 Hz, or 13500 rpm I 

Question. What would the concentration gradient be in this system with a speed of operation of 
70 000 rpm in an ultracentrifuge? 

P19.4 We need to determine the intrinsic viscosity from a plot of ((ry/ryo)- 1)/(c/(gdm-3)) against c, 
extrapolated to c = 0 as in Example 19.5. Then from the relation 

[ry] = KM~ [19.25] 

with Kanda from Table 19.4, the viscosity average molar mass Mv may be calculated. 1J/YJo values are 
determined from the times of How using the relation 

t} 1 p I 
- = - X - "' - [19.24] 
110 ro Po to 

noting that in the limit as c approaches 0 the approximation becomes exact. As explained in Example 19.5, 
[ry] can also be determined from the limit of (If c) In (ry/ryo) as c approaches 0. 
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We draw up the following table 

c/(g dm-3) 0.000 2.22 5.00 8.00 10.00 

tis 208.2 248.1 303.4 371.8 421.3 

~(ryo 1.192 1.457 1.786 2.024 

100[(~/~o) -I] 
8.63 9.15 9.82 10.24 

c((gdm 'l 

In (ry/~o) 0.1753 0.3766 0.5799 0.7048 

100 In (ry/~o) 
7.89 7.52 7.24 7.05 

c((gdm 3) 

The points are plotted in Figure 19.1. 

" - 10 ' "· E ' ~ E 
,.~ _,. 

8.22 
~-0~ 
- 0 

2 ~- 9 :::;-;:::::; 
I 0 

"' -~ 
.?.£ 
~- 8 s.= 
-o co =:-

II II 

-- 7 

0 2 4 6 8 10 
c/(gdm-3) Figure 19.1 

The intercept as determined from the simultaneous extrapolation of both plots is 0.0822 dm3 g- 1. 

Mv = (~)''" = ( o.0822dm'g-' )'f0.74 =12.1 x 10'1 
gmol- 1 K 9.5 x I0-6 dm3 g-1 

P19.6 The relationship (eqn 19.25) between [~] and Mv can be transformed into a linear one 

In[~]= InK+ alnMv 

so a plot of ln[17] versus In Mv will have a slope of a and ay-intercept ofln K. The transformed data and 
plot are shown below (Figure 19.2) 

Mv/(kgmol- 1) 10.0 19.8 106 249 359 860 1800 5470 9720 56800 
[ry]((cm3 g- 1) 8.90 11.9 28.1 44.0 51.2 77.6 113.9 195 275 667 
lnMv/(kgmol- 1) 2.30 2.99 4.66 5.52 5.88 6.76 7.509 8.61 9.18 10.90 
ln[~]/(cm3 g- 1) 2.19 2.48 3.34 3.78 3.94 4.35 4.749 5.27 5.62 6.500 
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J' ~ 1.0028 + 0.49999.< 

6 R 2 ~ 1.900 .......... , .. . 

! ............ ..! .. . 5 ·······························•·· 

4 ..... ""'1• ............. , .. . 

3 . " ... " .. ~." .. ·~ . . . . ......... ; .. 

2 4 6 8 10 12 

lnMv Figure 19.2 

Thus a= I 0.500 I and K = e"0028 cm3 g- 1 kg- 112 mol 1i 2 = 12.73 cm3 g- 1 kg- 112 mol'''i 

Solving for Mv yields 

See section 5.5(e) and Example 5.4. 

n RT ( c ) - = = I+ B= + · · · [Example 5.4, with n = pgh] 
C Mn Mn 

Therefore, to detennine M n and B we need to plot n fc against c. We draw up the following table 

cf(gdm-3) 

(n fc)f(Pafg dm-3) 

1.21 

Ill 

The points are plotted in Figure 19.3 

140 

130 .,. 
E 
'0 

"" ~ 120 • e;:_ 
~ 

0 s 110 

100 
0 2 4 6 

cjg dm-3 

2.72 
118 

5.08 
129 

Figure 19.3 

6.60 
136 
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A least~squares analysis gives an intercept of 105.4 and a slope of 4.64. It follows that 

RT = 105.4Pag- 1 dm3 = 105.4Pakg- 1 m3 

Mo 

(8.314JK- 1 mol- 1)x(293K) I _ 1 1 
and hence that M 0 = -'----'--::-::-=-:----:--T----+--'------"- = 23.1 kg mol 

105.4 Pa kg 1 m3 

_, 
The slope of the graph is equal to RTB ( M;, so 

RTB " 6 " 6 _, =4.64Pag--dm =4.64Pakg--m 
w 0 

(23.1 kg mol-l )2 x (4.64 Pa kg_, m6 ) I 3 _ 1 I Therefore, B = 
1 1 

= 1.02 m mol 
(8.314 J K mol ) x (293 K) 

The glass transition temperature Tg is the temperature at which imernal bond rotations freeze. In effect, 

the easier such rotations are, the lower Tg. Internal rotations are more difficult for polymers that have 
bulky side chains than for polymers without such chains because the side chains of neighboring molecules 

can impede each others' motion. Of the four polymers in this problem, polystyrene has the largest side 
chain (phenyl) and the largest Tg. The chlorine atoms in poly( vinyl chloride) interfere with each other's 

motion more than the smaller hydrogen atoms that hang from the carbon backbone of polyethylene. 
Poly(oxymethylene), like polyethylene, has only hydrogen atoms protruding from its backbone; however, 

poly(oxymethylene) has fewer hydrogen protrusions and a still lower Tg than polyethylene. 

Solutions to theoretical problems 

SI unit(li/P) = SI unit(~)/SI unit(p) = (Pa)/(kgm-3 ) = (N m-2)/(kgm-3) 

= (kgm- 1 s- 1)/(kgm-3) = m2 s- 1 

We begin by simplifying Poiseuille's formula with the assumptions thatp2 = po, Pl = pz + f:..p where 
6.p < pz, and 6.p2 « Zp26.p so the second order term may be discarded. 

dV 

dt 

(PT- pn rrr4 

16 lrypo 

{ (]J2 + 6.p)2
- p~} nr4 

16 iltpo 

(p~ + Zp26.p + b.p2 - p~) nr4 

16 lryp0 

When gravity is Lhe driving force for fluid How, b.p = Fgravity/(nr2) = mgl/(nr21) = pg/ where g is 
the gravitational acceleration and dV jdt = V jt = nr21/t. 

nr21 pg/ nr4 

=---
8 l11 

11/ p gr2 

- = - = constant 
t 8 I 
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Dividing by the identical expression for a reference liquid gives eqn 19.24. 

('I/ p)to <•1/ p) t 
--- = I or --- = -
('I/ p)ot ('I/ P)o to 

This shows that the drainage time is governed by the kinematic viscosity (11/ p). 

Eqn 19.26 gives the probability of finding the end of anN-step one-dimensional random walk at a 

distance nl from the start, 

l/2 

( 
2 ) -"2

/2N P= - e . 
rrN 

We generalize to a continuous version: 

Physically, it is more fundamental ro talk of the probability of finding the end "at" a given distance 

x = nxl rather than a given number of steps away. dx = ldnx. Hence, the probability of finding the 

end of the polymer in an interval between x and x + dx is 

1/2 
dP = (-2-) e-x2f2Nt2 dx. 

x nN/2 

Building our three-dimensional chain from one-dimensional random walks, we have 

( 
6 )3/2 3(r2+,,2+.21/"N/2 dP dP .dP. = -- e- · · < - dxdydz 

x ·\ - rrNI2 

(Note that in this step we have replaced N with N f3. This allows us to continue to regard N as the total 

number of units in the polymer, so the number of steps in each dimension, divided equally among this 

number, becomes N f3.) Now change variables to spherical polar coordinates: 

and dxdydz = r2 sin 8drd8d¢. 

so dP dP .dP. = -- e-3' i 2NI ,-- sin 8drd8d"-. ( 
6 )'I' 2 2 , 

.\ _I - 7rNI2 '¥ 

To find the probability of finding the ends of the polymer at a distance between rand r + dr regardless 

of angle, integrate over the angles and divide by 8, as stated in the problem, to restrict the integration to 

positive x,y, z:: 

f positive 
x.y,: 
directions 

{'" 
sin 8d8 lo d¢ 
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( 
3 ) 1/2 

Defining a = ZN/2 allows us to complete the derivation: 

f ( a ) 3 3 2 2 2 -, dP_,dP,.dP, =f(r)dr wheref(r) = 4rr _
112 

e- 'I Nl r· . 
positive ,, 
x,y,;: 
directions 

A simple procedure is to generate numbers in the range I to 8, and to step north for a I or 2, east for 3 

or 4, south for 5 or 6, and west for 7 or 8 on a uniform grid. One such walk is shown in Figure 19.4. 

Roughly, they would appear to vary as N 112 

The volume of a spherical molecule of radius a is 

4rra3 
Vmol = -

3
-

Figure 19.4 

The smallest distance possible between centers of two such molecules is 2a, so the excluded volume is 

4rr(2a)3 

Vp = 
3 

= Svmol 

so 
I 16rr 3 16rr 33 B = 2NAVp = 4NAVmol = TNAacff = -

3
-NAY Rg 

(a) Rg = (~Y
12

1 [19.33] 

so B = 
16

" y 3L3N 312N = 14 22 X 1023 mol-l X (IN 1i 2) 3 1 
3 X 63/2 A L. -·-------'---'-..J. 

= (4.22 X I023 mol- 1) X [(154x w- 12 m) X (4000) 112
]3 =10.39m3 mol- 1 1 
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(b) Rg = 2112 x Rg(free) [19.36] 

so B = 2312 
X B(free) = lu9 X 1024 mol-l X {IN 112) 3

1 

= 23/ 2 x (0.39 m3 mol- 1) = lu m3 mol- 1 I 

Given that G = U - TS- tl and dU = TdS + tdl. we take the differential. obtaining 

dG = dU - TdS- SdT - ldt- tdl 

= TdS + rdl- Tds- SdT -ldt - rdl = 1-sdT - ldt I 

Since A = U - TS. we have A = G + tl. 

so dA = dG + tdl + ldt = -SdT- ldt + tdl + ldt = 1-SdT + tct/1 

Since dA and dG are both exact differentials 

Since dU = TdS + rdl [given]. 

( aU) = T(aS) +t = -T(~) +t [Maxwell relation above] 
a/ T a/ T aT t 

L_ __ _:__J 

Solutions to applications 

Molecular mechanics computations with the AMBER force field using the HyperChem package are 
reported below. The value of the total potential energy will vary between different force fields, as will 
the shape of the potential energy surface. The local energy minimum at¢ = -179.6° and Y, = -4.1° is 
found to have a potential energy equal to 28.64 kJ mol- 1 when R =H. This value is used as a reference to 
calculate energy differences (6.£) on the potential energy surface. 6.£ values give the relative stability of 
different conformations with higher values indicating energetically unstable conformations. Similarly, 
6.£ values were calculated with respect to the local energy minimum at¢= -152.3° and 1/f = 163.2° 
whenR = CH3. 

initial optimized 
</J/o 1{1/" </J/0 1{1/" £/(kJmol- 1) 6£/(kJ mol- 1) 

(a) R = H 75 -65 -176.0 8.3 28.765 0.126 
180 180 180 180 32.154 3.515 
65 35 -179.6 -4.1 28.639 0.000 

(b) R = CH3 75 -65 54.5 19.7 46.338 7.531 
180 180 -152.3 163.2 38.807 0.000 
65 35 52.9 24.1 46.250 7.443 

The computations were set up by using the software's "model build" command, that is, initially setting 
default values for bond lengths and angles except for the specified initial values of¢ and 1/f. Care 
must be taken to build the proper chirality at the central carbon when R = CH3. Then the constraints 
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were removed, and the entire structure was allowed to relax to a minimum energy. Not all of the 

initial conformations relaxed to the same final conformation. The different final conformations appear 
to represent local energy minima. It ought not to be surprising that there are several such minima in even 

a short peptide chain that contains several nearly free internal rotations. It is instructive to compare the 

all trans(¢= l/t = 180°) initial conformation in the R =Hand R = CH3 cases. In the former. neither 
angle changes, but the resulting structure is not the lowest-energy structure. In the Iauer, the methyl 
group appears to push the planes of the peptide link away from each other (albeit not far) due to steric 

effects; however, the resulting energy is lower than that of the other conformations examined. 

Two of the initial conformations of each molecule converge to the same energy minimum. These energy 
wells are rather broad and the exact angle at which the computation stops within the minimum depends 

upon details of convergence criteria used in the iterative methodology of the software as well as details 

of the force field. Both sets of computations also found a second local energy minimum. 

An allernative method for studying the energy dependence on rjJ and ljJ involves a method like that 

specified above but with the AMBER computation performed at fixed values of both angles. Figure 19.5 
summarizes a set of computations with -180° < rjJ < 180° and ljJ = 90°. To characterize the energy 

surface, one would carry out similar calculations for several values of l/J. 

60~----.----,-----,----•• ~---,----.-----~---. 

• 
• 

55+----+----,_----r----r----t----+----,_--~ 
• 

• 
' 0 
E 50------1-----t----+----+---~-----r--~-r----1 :!::! • • 

"" "' 
45+----+----,_----r----r----t----+----,_--~ 

• • 

40~--~---+----~--~---+----~--+---~ 
-180 -135 -90 -45 0 

4>1' 

45 90 135 180 

Figure 19.5 

Assume the solute particles are solid spheres and see how well Rg calculated on the basis of that 

assumption agrees with experimental values. 

and draw up Jhe following Jable 
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Serum albumin 
Bushy stunt virus 
DNA 

66 X 103 

10.6 X 106 

4 X 106 

0.752 
0.741 

0.556 

2.09 

11.3 

7.43 

2.98 

12.0 
117.0 

Therefore, serum albumin and bushy stunt virus resemble solid spheres, but DNA does not. 

Rearrange eqn 19.20 to yield 

.., Mwbu/ 
so a plot of Inc against r should be a straight line of slope 

2
RT . We construct the following table 

r/cm 5.0 5.1 5.2 5.3 5.4 
c/(mg em-3) 0.536 0.284 0.148 0.077 0.039 
r 2/(em2) 25.0 26.0 27.0 28.1 29.2 
ln(c/mg em-3) -0.624 -1.259 -1.911 -2.564 -3.244 

The points are plotted in Figure 19.6. The least-squares slope is -0.623. 

Therefore 

0 
....... ................ 

• 

""" 
. 

' 
.. •· .. , .. ....... ...... ....... ....... , ..... 

"-.., c· . ······ s 
• "-. . 

""" 

-I 

' :§ -2 
~ 

~ 
:g -3 

"" : N :.. . . -4 
25 26 27 28 29 30 

Figure 19.6 

- ' 
Mw(l - pv,)w- = -0.623 em-2 = -0.623 x 104 m-2 

2RT 

It follows that 

_ (-0.623 x 104m-2) x (2) x (8.314JK- 1 mol- 1) x (293K) I -1 I 
Mw = = 65.6kgmol . 

{(I)- (1.001 gem 3) x (1.112eml g 1)) x [(2rr) x (322s 1)]2 

The sedimentation constantS must first be calculated from the experimental data (eqn 19.16). 

s I dIn r 
S=- = --,--[PI9.1] 

rw2 w- dr 
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Therefore, the slope of a plot of In r against/ will be related to S. We draw up the following table. 

tjs 0 300 600 900 1200 1500 1800 

rlcm 
ln(r/cm) 

6.127 6.153 6.179 6.206 6.232 6.258 6.284 
1.813 1.817 1.821 1.826 1.830 1.834 1.838 

The least-squares slope is 1.408 X I a-s s- 1, so 

slope 1.408 X w-5 s- 1 -13 I I 
S = w2 = [(2rr) X (50 X 103j60s)]2 = 5.14 x 10 s = 5.14Sv 

- SRT (5.14 x 10- 13 s) X (8.314JK-I mol- 1) x (293K) 
Then M = - [ 19.19] = -'---:-:-----::-::-::::-c-'---:C::::-::-:----:::-:-::---:-:::-'-;-;'---:,--,----'-

" bD (1 -0.9981 X 0.728) X (7.62 X 10 II m2s) 

=160.lkgmol- 1 1 

We need to determine the ratio of the actual frictional coefficient,f, of the macromolecule to that of the 
frictional coefficient, fo, of a sphere of the same volume, so that by interpolating in Table 19.3 we can 
obtain the dimensions of the molecular ellipsoid. 

kT (1.38lxl0-23 JK- 1)x(293K) -II -1 
f=D= 7.62x 10 11m2s I =5.31 x 10 kgs 

= 4.38 X 10-l m3 mol-l 

3Vm l/l (3) X (4.38 X 10-2 m3 mol- 1) 
2 59 

( )

1/3 

Then a = -- = = nm 
' (4rrNA) (4rr) X (6.022 X 1023 mol 1) . 

/0 = 6rrary = (6rr) X (2.59 X 10-9 m) X (l.QQ X 10-J kgm-l S-l) = 4.89 X 10-ll kgs-l 

! 5.31 
which gives - = -- = 1.09 

fo 4.89 

Therefore, the molecule is either prolate or oblate, with an axial ratio of about 2.8 (Table 19.3). 

(a) SfkB = ln(W) 

b.Sfks = ln(Wcircular) -ln(Widcal chain) 

Wcircular is the configuration weight of the DNA molecule that has joined ends (n = 0) while WiJcal chain 

is the configuration weight for the molecule chain for which no segment has a constraint and two 
possible configurations (right-pointing and left-pointing, see Justification 19.3). Widcal chain for a 
molecule of N segments equals 2N. 
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In (W"""I"') =In (N!)- 2\n ((N /2)!) 

= ln(2rr) 112 + (N + ~) ln(N)- N 

- 211n(2rr) l/2 + ( ~ + D In ( ~) - ~I (Stirling's approx.) 

= In { zN ( rr
2
N) ~ } 

6.5/ks =In { zN (rrzN) t} -ln(2N) 

6.5/ks =In (rr2N) t 

Since 2/rrN < I, entropy decreases in forming the closed circular (cc)DNA. The following graph, 

Figure 19.7, shows the dependence of 6.5 upon N with a plot of[(N) = ln(I/N) 112 (i.e. 1:!.5/ka
ln(2/rr) 112). 

-I 

'-., -1.5 

-2L____,___~========:d 
-2.5 

0 20 40 60 80 100 
N Figure 19.7 

(b) (i) A continuous, normalized Gaussian function, which is also called the normal distribution or the 
bell-curve, has the form:f(x) = (\/(2rra2) 112)e(x-(xll'l2•' where -oo < x < oo. (x) is the 

mean value of x and a is the standard deviation. It can be shown that a 2 = {x2 ) - (x} 2. 

The discrete energy distribution for a twisted ccDNA molecule is: 
Pi = e-f3e1 / q [ 16.7] = e-f3kP. I q where k is an empirical constant and i = 0, ±I, ±2, .. 

Because it has an exponent in i2, which is comparable to x2 in the above Gaussian function, the 

energy distribution has the form of a Gaussian function with a maximum value that is centered 
upon i = 0. The standard deviation of the discrete Gaussian distribution is found by comparing 

the two equations. It is a= (1/2{3k) 112 

(ii) The following Math Cad worksheet plots the energy distribution at several values of the unitless 

temperature Tratio = I/ {Jk =kaT fk. Bar plots (histograms), Figure 19.8(a), are appropriate for 

discrete distributions in which the argument takes on specific values only (i=O, ±I, ±2, ±3, ... ). 
Even though the argument is not defined for non-integer values of i, the last graph, Figure 19.8(b) 

presents line plots with the understanding of discrete values. This reduces the visual confusion 

of overlapping bars from multiple plots. The plots show that at higher temperatures there are 
fewer molecules in the lowest energy state i = 0 and a greater number of molecules in the high 

energy states. 
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Nma:o: .- 10 
75 -~ 

q (Tratio) := L e-1-/Trdti<> 

i=-75 

e-i 2
/Tr.tlin 

P (Tr:uio,i) ·-
q (Tratio) 

(iii) Cannot be completed unless k is specified. See Figure 19;8 for variation of p with i at several 

temperatures. 

0.2 ,-----~----~-----~----..., 

0.15 
Tratin= 10 

p( IO.i) 0.1 

0.05 

0t':-o __ ....J~'.J;_ nsill...lLLLJ.L.l.J:o.lLl.LJLL.lLLIJ.;-nsl..r:::L..:, _ _jt o 

Figure 19.8 

(a) The increase in temperature with the hydrophobic chain length is a result of lhe increased strength 
of the van der Waals interaction between long unsaturated portions of the chains that can interlock 

well with each other. The introduction of double bonds in the chains can affect the interlocking of 

the parallel chains by putting kinks in the chains, thereby decreasing the strength of the van der 

Waals interactions between chains. Double bonds can be either cis or rmns. Only cis-double bonds 

produce a kink, but most falty acids are the cis-isomer. So we expect that the transition temperatures 

will decrease in rough proportion to the number of C;::C bonds. 

(b) The addition of cholesterol is expected to increase the temperature of the transition from the liquid 

crystalline state to the liquid state by altering the conformations of the hydrocarbon chains. Cho

lesterol stabilizes extended chain conformations of adjacent hydrocarbon sections by van der Waals 

interactions relative to the coiled conformations that predominate when cholesterol is absent. The 

extended chains can pack better than coiled arrangements. However the lower transition temperature, 

that from the solid crystalline state to the liquid crystalline form, is probably decreased upon addi

tion of cholesterol; its presence prevents the hydrophobic chains from freezing into a solid array by 

disrupting their packing. This will also spread the melting point over a range of temperatures. 

(a) 
I] f 1 I I 

- = - "" I + [ry]c + k [1/]-c-
IJ* t* 

fjf*-1 1 I 
Define F = = [ry] + k [11]- c 

c 
A linear regression ofF against c yields an intercept equal to [17] and a slope equal to k'[17]2. 

( I) In to/nene: Linear regression (R = 0. 999 54) yields 

[ry] = 0.08566dm3 g- 1 =I 0.086dm3 g- 1 I; standard deviation = 0.00020dm3 g- 1 

k'[11f = 0.002 688 dm6 g-2; standard deviation = 0.000 057 dm6 g-2 
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Then 

, 0.002 688 dm6 g-2 r;;c;:;-1 
k= =~ 

(0.085 66 dm3 g-1 )' 

(2) In cyclohexane: Linear regression (R = 0.981 98) yields 

1>71 = 0.041 50 dm3 g -I = I 0.042 dm3 g- 1 I; standard deviation = 0.000 18 dm3 g -I 

k'[17]2 = 0.006001 dm6 g-2 ; standard deviation= 0.000 116dm6 g-2 

Then 

0 000 600J dm6 ,-, ~ 
k' = . ~ = 0.35 

(0.041 50 dm1 g-1 )' 

[17] = KM~ 

(I) In toluene 

or 
__ ( [ry]) 1/a 
Mv- K 

_ o.o85 66 dm- g- I I 
( 

- , I )(1/0.71) 

M v = -:-:-::----:-::--;--:--'i--,.1 g mol-l = L2_._4_x_l o_5_:g:_I_n_o_I-_1...J 
115x 10 5 dm3 g · · 

(2) Ill cyclohexane 

( 

- 3 I )(1/(1/2)) _ 0.04150dm· g-
Mv= 

8.2 x IQ-5 dm3 g- 1 

(c) [>/]/ (dm3 g- 1) = <f>(rn,_fm) 3 /M, <f> = 2.84 x IO"' 

r,,, = C'~M) 
113

m. wherer,.,, = (r')
112 

(
0.08566 X 2.39 X 105

) 
113 ~ 

(I) In toluene: l"rms = ..,6 m = ~ 
2.84 X !0-

(

0.04150 X 2.56 X 105 ) l/
3 ~ 

(2) In cycfohexane: l'rm~ = 
2

_
84 

x I Q26 rn = ~ 

(d) M(styrene)= 104gmoi- 1 

Average number of monomeric units, (n) is 

M, 
(11)=-:-:-;---, 

M(styrene) 

( 1) In toluene (11) = 2.39 X IO' g mol-l = 12.3 X w'l 
104grnol 1 

(2) In cyc!ohexane: (11) = 2.56 x IO' gmol-1 = 12.5 x Io'l 
104gmol 1 
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(e) Consider the geometry in Figure 19.9 

0.4 ,-----,------..------.,..-----, 

2 
0.3 

p(2,i) 

p(5,i) 
0.2 

p(IO.i) 

p(20.i) 

0.1 

Figure 19.9 

For a polymer molecule consisting of {n) monomers, the maximum molecular length, Lrnax. is 

Lma:w.: = 21 (n) cos 8 

= 2(0.154 nm) (n) cos 35' 

= (0.2507 nm) (n) 

In toluene: Lmex = (0.2507nm) x (2.30 x 103) = 15.8 x 102 nm I 
In cyc/ohexane: Lmex = (0.2507 nm) x (2.46 x 103 ) = 16.2 x 102 nm I 

( 
(n)) 1/2 

(f) Rg = 3 l = (0.0889nm)(n) 1i 2 

Kirkwood-Riseman: ,KR = ([ry]M)'i' = ( [ry]M )
113 

m1s $ 2.84 X lQ26 

constrained coil: '""' = (2(n)) 1i 2 t [19.36] or (n) 1i 2 / [19.31] 

Solvent (II) R,fnm rKRtnm 
""' 

,.cc /nm 
""' 

Toluene 2.30 x 103 @] 42 110.4or7.41 

Cyclohexane 2.46 x 103 CD] 33 1Ioiior761 

(g) There is no reason for them to agree; they are different samples; there is no fixed value of M for 

polystryene. The manufacturer's claim appears to be valid. 
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020.2 

020.4 

020.6 

Answers to discussion questions 

We can use the Debye-Scherrer powder diffraction method, follow the procedure of Example 20.3, 
and in particular look for systematic absences in the diffraction patterns. We can proceed through the 
following sequence 

1. Measure distances of the lines in the diffraction pattern from the center. 
2. From the known radius of the camera, convert the distances to angles. 
3. Calculate sin2 (). 

4. Find the common factor A = J.. 2 /4a2 in sin2 e = (J..2 j4a2)(h2 + k' + tl). 
5. Index the lines using sin2 e I A = h2 + k2 + 12 

6. Look for the systematic absences in (hkf). See Figure 20.22 of the text. For body-centered cubic, 
diffraction lines corresponding to h + k + l that are odd will be absent. For face-centered cubic, only 

lines for which h, k, and I are either all even or all odd will be present, others will be absent. 
7. Solve A= J.. 2 j4a2 fora. 

The phase problem arises with the analysis of data in X-ray diffraction when seeking to perform a 
Fourier synthesis of the electron density. In order to carry out the sum it is necessary to know the 
signs of the structure factors; however, because diffraction intensities are proportional to the square of 
the structure factors, the intensities do not provide infonnation on the sign. For non-centrosymmetric 
crystals, the structure factors may be complex, and the phase a in the expression Fhkl = IFhklleia is 
indeterminate. The phase problem may be evaded by the use of a Patterson synthesis or tackled directly 
by using the so-called direct methods of phase allocation. 

The Patterson synthesis is a technique of data analysis in X-ray diffraction which helps to circumvent 
the phase problem. In it, a function Pis fonned by calculating the Fourier transform of the squares of the 
structure factors (which are proportional to the intensities): 

P(r) = ~ L 1Fhkll2e-2rri(hx+ky+lz) 

l1kl 

The outcome is a map of the separations of the atoms in the unit cell of the crystal. If some atoms 
are heavy (perhaps because they have been introduced by isomorphous replacement), they dominate the 
Patterson function, and their locations can be deduced quite simply. Their locations can then be used in 
the determination of the locations of lighter atoms. 

In a face-centered cubic close-packed lattice, there is an octahedral hole in the center. The rock-salt 
structure can be thought of as being derived from an fcc structure of Cl- ions in which Na+ ions have 
filled the octahedral holes. 
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The caesium-chloride structure can be considered to be derived from the ccp structure by having Cl

ions occupy all the primitive lattice points and octahedral sites, with all tetrahedral sites occupied by 
cs+ ions. This is exceedingly difficult to visualize and describe without carefully constructed figures 

or models. Refer to S.-M. Ho and B. E. Douglas, J. Chem. Educ. 46, 208, 1969, for the appropriate 
diagrams. 

Semiconductors generally have lower electrical conductivity than most metals. Additionally, the con

ductivity of semiconductors increases as the temperature is raised whereas that of metals decreases. 
The difference occurs because of the relative balance between the excitation of electrons into electrical 

conductance and the scattering of electrons off the conductance path by collisions with vibrating atoms. 

The scaltering process predominates with increasing temperature of a metal. The excitation process 

predominates for the semiconductor. 

The electronic structure of solids consists of allowed energy bands. The highest energy band of a metal 

is partially filled. Being approximately filled to the Fermi level only, there is no gap of forbidden 
energies for excitation. It is easy to promote electrons from the filled level in which all random vector 

momentums are occupied to levels in which there is a preferred vector momentum. This provides high 

electrical conductivity. The energy difference between the top of the band and the Fermi level helps to 
explain their appearance. If sufficiently wide, all incident visible light can be both absorbed and emiued. 

This gives many metals their shiny, "silver" luster. A narrow width may result in color as a range of 

visible frequencies are preferentially emitted. An example is the reddish color of copper. 

Semiconductors have a band gap, Eg. between a filled valence band and an approximately unfilled 

conductance band above it. Significant energy is needed to promote electrons to the conductance band. 
The energy may be provided thermally with the application of higher temperature, with electromagnetic 

radiation of frequency above Vmin = Eg(h, or with an applied voltage. The visual appearance of a 

semiconductor is approximated with Vmin· For example, electromagnetic radiation with more energy 
than green light is absorbed by cadmium sulfide (see Illustration 20.2) so the yellow, orange and red 

visible light are predominately reflected and seen as a yellow-orange color by an observer. 

The most obvious difference is that there is no magnetic analog of electric charge; hence, there are no 
magnetic 'ions.' Both electric and magnetic moments exist and these can be either permanent or induced. 

Induced magnetic moments in the entire sample can be either parallel or antiparallel to the applied field 

producing them (paramagnetic or diamagnetic moments), whereas in the electric case they are always 
parallel. Magnetization, M, is the analog of polarization, P. Although both magnetization and induced 

dipole moment are proportional to the fields producing them, they are not analogous quantities, neither 

are volume magnetic susceptibility, x, and electric polarizability, ct. The magnetic quantities refer to the 
sample as a whole, the electric quantities to the molecules. Molar magnetic susceptibility is analogous to 

molar polarization as can be seen by comparing eqns 20.30 and 18.15 and magnetizability is analogous 

to electric polarizability. 

Solutions to exercises 

E20.1 (b) (!, 0, ~) is the midpoint of a face. All face midpoints are alike, including (!, 4, 0) and ( 0, ~, ~) 

There are six faces to each cube, but each face is shared by two cubes. So other face midpoints can be 

described by one of these three sets of coordinates on an adjacent unit cell. 
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E20.2(b) Taking reciprocals of the coordinates yields ( 1, t. -I) and ( !. !. t) respectively. Clearing the fractions 

yields the Miller indices I (313) and (643) I 
E20.3(b) The distance between planes in a cubic lattice is 

(/ 

dhkl = (f12 +k2 + (2)1/2 

This is the distance between the origin and the plane which intersects coordinate axes at (hja, kja, /fa). 

dt21 = 523pm =1214 ml 
(I +2' + 1)1/2 p 

(2' :~;71)'1' = 1
174

pm I 

523pm I I d'44 = = 87.2 pm 
- (22 +4'+4')'1' . . 

E20.4(b) The Bragg law is 

nA = 2dsin8 

Assuming the angle given is for a first-order reflection, the wavelength must be 

A = 2(128.2 pm) sin 19.76° = 186.7 pm I 

E20.5(b) Combining the Bragg law with Miller indices yields, for a cubic cell 

In a face-centered cubic lattice, h, k, and I must be all odd or all even. So the first three reflections would 

be from the (1 1 1), (2 0 0), and (2 2 0) planes. in an fcc cell, the face diagonal of the cube is 4R, where 

R is the atomic radius. The relationship of the side of the unit cell toR is therefore 

Now we evaluate 

A 

2a 

4R 
so a=-

./2 

154pm = 0.189 
4./2(144pm) 

We set up the following table 

hk/ 

Ill 

200 
220 

sine 

0.327 

0.378 

0.535 

er 
19.1 

22.2 
32.3 

38.2 
44.4 

64.6 
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E20.6(b) In a circular camera, the distance between adjacent lines is D = R6.(28), where R is the radius of the 
camera (distance from sample to film) and() is the diffraction angle. Combining these quantities with 
the Bragg law (A= 2dsinB, relating the glancing angle to the wavelength and separation of planes), 

we get 

D = 2Rl:!.e = 2Rl:!.(sin- 1 

2
Ad) 

= 2(5.74cm) x sin- 1 - sin- 1 =I 0.054cm I ( 
96.035 95.401 pm) 

2(82.3 pm) 2(82.3 pm) 

E20.7(b) The volume of a hexagonal unit cell is the area of the base times the height c. The base is equivalent to 
two equilateral triangles of side a. The altitude of such a triangle is a sin 60°. So the volume is 

V = 2(ta X asin60°) C = a2csin60° = (1692.9pm)2 
X (506.96pm) X sin60° 

= 1.2582 X 109 pm3 = 11.2582 nm3 I 

E20.8(b) The volume of an orthorhombic unit cell is 

3.86 x 108 pm3 

V =abc= (589 pm) X (822 pm) X (798 pm) = IO I ) = 3.86 X I0-22cm3 

(10 pmcm ) 

The mass per formula unit is 

135.01 gmol- 1 22 
Ill = = 2.24 X 10- g 

6.022 x 1023 mol 1 

The density is related to the mass m per formula unit, the volume V of the unit cell, and the number N 

of formula units per unit cell as follows 

Nm 
p=v 

so N = p V = (2.9 g cm-3
) x (3.86 x 10-22 cm3) =IT] 

m 2.24 x 10 22 g 

A more accurate density, then, is 

5(2.24 x 10-22 g) I _, I 
p = , 2 3 = 2.90gcm 

3.86 x 10 - em 

E20.9(b) The distance between the origin and the plane which intersects coordinate axes at (hja,kfb,ljc) is 
given by 

(
h' k2 L' )-t/2 ( 32 22 22 )-t/2 

d,kl = - + - + - = + + =;-:----c-,;-
a2 b2 c2 (679 pm)2 (879 pm)2 (860 pm)' 

dm =1182pml 

E20.1 O(b) The fact that the Ill reflection is the third one implies that the cubic lattice is simple, where all indices 
give reflections. The I I I reflection would be the first reflection in a face-centered cubic cell and would 
be absent from a body-centered cubic. 



The Bragg law 

sinB"" = .!:_(h2 + k2 + 12) 1/ 2 

2a 

can be used to compute the cell length 
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a= _A (h2 +k2 +P) 1i 2 = 
137

pm (1 2 +I 2 +I 2) 1i 2 =390pm 
2sm8!Jkl 2sm 17.7° 

With the cell length, we can predict the glancing angles for the other reflections expected from a simple 
cubic 

8/okJ = sin- 1 (:a (h2 + k2 + 12) '12) = sin- 1 (0.176(h2 + k2 + P) 112) 

Btoo = sin- 1 (0.176(1 2 + 0 + 0) 112) = 10.1° (checks) 

811o = sin- 1 (0. 176(1 2 + 12 + 0) 112) = 14.4° (checks) 

8200 = sin -I (0.176(22 + 0 + 0) 1 12) = 20.6° (checks) 

These angles predicted for a simple cubic fit those observed, confirming the hypothesis of a simple 

lattice; the reflections are due to the I (100), (I 10), (Ill), and (200) I planes. 

E20.11(b) The Bragg law relates the glancing angle to the separation of planes and the wavelength of radiation 

A= 2dsin8 
A 

so 8 = sin- 1 

2
d 

The distance between the origin and plane which intersects coordinate axes at (hfa, kjb, ljc) is given by 

So we can draw up the following table 

hkl 

100 

010 
III 

574.1 

796.8 
339.5 

4.166 

3.000 
7.057 

E20.12(b) All of the reflections resent have h + k +I even, and all of the even h + k +I are present. The unit cell, 

then, is body-centered cubic 

E20.13(b) The structure factor is given by 
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All eight of the vertices of the cube are shared by eight cubes, so each vertex has a scattering factor 

of[ /8. 

The coordinates of all vertices are integers, so the phase ¢ is a multiple of 2rr and ei¢ = I. The 

body-cemer point belongs exclusively to one unit cell, so its scattering factor is f. The phase is 

When /1 + k +I is even,¢ is a multiple of 2rr and e1¢ = 1; when II+ k +I is odd,¢ is :rr +a multiple 
of 2rr and e1¢ = -I. So e1¢ = (-I )11+k+l and 

F~okl = 8({ /8)( I)+ [( -l)"+k+l 

=12Jforh+k+/even and Oforh+k+/oddl 

E20.14(b) There are two smaller (white) triangles to each larger (gray) triangle. Let the area of the larger triangle be 

A and the area of the smaller triangle be a. Since b = ~B(base) and h = 1H(height), a = iA. The white 

space is then 2N A/4. for N of the larger triangles. The total space is then (NA + (NA/2)) = 3NA/2. 
Therefore the fraction filled is NA/(3NA/2) = 12/31 

E20.15(b) See Figure 20.1. 

Figure 20.1 

The body diagonal of a cube is a,/3. Hence 

av'3 = 2R + 2r or v'JR = R + r [a = 2R] 

,. r;;-:;:;;;l 
:R=~ 

E20.16(b) The ionic radius of K+ is 138 pm when it is 6-fold coordinated, I 51 pm when it is 8-fold coordinated. 

(a) The smallest ion that can have 6-fold coordination with it has a radius of ( -J2- I) x (138pm) = 

157pm I 
(b) The smallest ion that can have 8-fold coordination with it has a radius of ( ,/3- I) x (!51 pm) = 

I"' pm I· 
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E20.17(b) The diagonal of the face that has a lattice point in its center is equal to 4r, where r is the radius of the 

mom. The relationship between this diagonal and the edge length a is 

4r = a-!'i so a = 2./'ir 

The volume of the unit cell is a3 , and each cell contains 2 atoms. (Each of the 8 venices is shared among 
8 cells; each of the 2 face points is shared by 2 cells.) So the packing fraction is 

2Va10111 2(4/3)rrr3 rr ~ 
--= =--=~ 

Vcoll (2./'ir)' 3(2)3/2 

E20.18(b) The volume of an atomic crystal is proportional to the cube of the atomic radius divided by the packing 

fraction. The packing fraction for hcp, a close-packed structure, is 0.740; for bee, it is 0.680. So for 
tiLanium 

v"" 0.740 ( 122pm)
3 

- = -- --- =0.99 
v,,p 0.680 126 pm 

The bee structure has a smaller volume, so the transition involves a I contraction I. (Actually, rhe dma are 

not precise enough to be sure of this. 122 could mean 122.49 and 126 could mean 125.51, in which case 

an expansion would occur.) 

E20.19(b) Draw points corresponding to the vectors joining each pair of atoms. Heavier atoms give more 

intense contributions than light atoms. Remember that there are two vectors joining any pair of atoms 
~ ~ 

(AB and AB); don't forget the AA zero vectors for the center point of the diagram. See Figure 20.2 

for CoHo. 

Figure 20.2 

E20.20(b) Combine E = !kT and E = !mv2 = 2::,~. 2 , to obtain 

" A - -:-:-;;::-;-,; 
- (mkT)l/2 

6.626 X J0-34 J S 

c:-[(-:-1-::.6-7-5 -x-I-:0--"'27'"'k_g_) _x_(_l-:.3-:-8-1 -x-I-:O---:o2lccJ-:K-:-o1-) -x-(--:-3--:-00_K_)]=l/2 = 1252 pm I 



368 INSTRUCTOR'S SOLUTIONS MANUAL 

E20.21 (b) The lallice enthalpy is the difference in enthalpy between an ionic solid and the corresponding isolated 
ions. In this exercise, it is the enthalpy corresponding to the process 

The standard lattice enthalpy can be computed from the standard enthalpies given in the exercise by 
considering the formation of MgBr2 (s) from its elements as occuring through the following steps: 

sublimation of Mg(s), removing two electrons from Mg(g), vaporization of Br2(1), atomization of 
Br2(g), electron attachment to Br(g), and formation of the solid MgBr2 lattice from gaseous ions 

6 6 & + D.mH (Br2, g) + 2D.,gH (Br, g) - D.LH (MgBr2, s) 

So the laltice enthalpy is 

D.LH
6 

(MgBr2,s) = [148 + 2187 + 31 + 193- 2(331) + 524]kJ mol-l= 12421 kJ mol-l I 

E20.22(b) Tension reduces the disorder in the rubber chains; hence, if the rubber is sufficiently stretched, crystal
lization may occur at temperatures above the normal crystallization temperature. In unstretched rubber 

the random thermal motion of the chain segments prevents crystallization. In stretched rubber these 
random thermal motions are drastically reduced. At higher temperatures the random motions may still 

have been sufficient to prevent crystallization even in the stretched rubber, but lowering the temperature 
to 0 °C may have resulted in a transition to the crystalline form. Since it is random motion of the chains 

that resists the stretching force and allows the rubber to respond to forced dimensional changes, this 
ability ceases when the motion ceases. Hence, the seals failed. 

COMMENT. The solution to the problem of the cause of the Challenger disaster was the final achievement, 

just before his death, of Richard Feynman, a Nobel prize winner in physics and a person who loved to 

solve problems. He was an outspoken person who abhorred sham, especially in science and technology. 

Feynman concluded his personal report on the disaster by saying, 'For a successful technology, reality must 

take precedence over public relations, for nature cannot be fooled' {James Gleick, Genius: The Life and 

Science of Richard Feynman. Pantheon Books, New York (1 992).) 

E20.23{b) Young's modulus is defined as: 

normal stress 
E= 

normal strain 

where stress is deforming force per unit area and strain is a fractional deformation. Here the deforming 
force is gravitational, mg, acting across the cross-sectional area of the wire, 1r r2 . So the strain induced 

in the exercise is 

. stress mg 4mg 4(IO.Okg)(9.8ms-2) I _, 1 
stram = -- = --- = 5.8 x 10 -

E rr(d/2) 2£- rrcf2E- rr(O.IO x 10 3 m) 2 (215 x 1Q9Pa) 

The wire would stretch by 5.8%. 
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E20.24(b) Poisson"s ratio is defined as: 

transverse strain 
Vp = 

normal strain 

where normal strain is the fractional deformation along the direction of the deforming force and transverse 
strain is the fractional deformation in the directions transverse to the deforming force. Here the length 

of a cube of lead is stretched by 2.0 percent, resulting in a contraction by 0.41 x 2.0 percent, or 0.82 

percent, in the width and height of the cube. The relative change in volume is: 

v +vt.v = (1.020)(0.9918)(0.99181 = 1.oo3 

and the absolute change is: 

t.V = (1.003- l)(l.Odm3 ) =I 0.003dm3 l 
E20.25(b) p-type; the dopant. gallium. belongs to Group 13. whereas germanium belongs to Group 14. 

E20.26(b) 1.12eV ( 1.602 X 10- 19 J) 14 
Eg=ll\Jmin and l!min=Eg/h= 

6
_
626

x 
10 3415 

leV =2.71 x 10 Hz 

E20.27(b) m = g,\S(S + I)) 1121's [20.34. with Sin place of s] 

Therefore, since m = 4.00/As 

( ') 2 S(S + I)= 4 x (4.00) = 4.00. implying that S = 1.56 

Thus S :::::::: ~, implying three unpaired spins. 

In actuality most Mn2+ compounds have [I) unpaired spins. 

E20.28(b) 
xM (-7.9 x w-6) x (84.15gmol- 1) 

Xm=xVm=---;;-= 0.8llgcm 3 

= 1-8.2 X w-4 cm3 mol- 1 I= 1-8.2 X w-tO m3 mol- 1 I 
E20.29(b) The molar susceptibility is given by 

N02 is an odd-electron species, so it must contain at least one unpaired spin; in its ground state it has 

one unpaired spin, so S = ! . Therefore, 

Xm = (6.022 X 1023 mol- 1) X (2.0023)2 X (4JT X I0-7 T2 r 1m3) 

(9.274 X 10-24 Jr 1
)
2 X(!) X(~+ 1) 

X 3(1.381 X 10 23JK 1) X (298K) 

= 11.58 X w-• m3 mol- 1 I 
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The expression above does not indicate any pressure-dependence in the molar susceptibility. How

ever, the observed decrease in susceptibility with increased pressure is consistent with the fact that 
N02 has a tendency to dimerize, and that dimcrization is favored by higher pressure. The dimer has 

no unpaired electrons, so the dimerizmion reaction effectively reduced the number of paramagnetic 
species. 

E20.30(b) The molar susceptibility is given by 

so S(S +I)= 
3
k;xm, 

NAgci-'-OJLB 

3(1.381 X I0-23 JK- 1) X (298K) 
S(S + I) = _,:...=--=,---...,.--.--''--~=.;, 

(6.022 X 1023 mol I) X (2.0023)2 

= 2.84 so 
-I+ .JI + 4(2.84) s = = 1.26 

2 

corresponding to 12.521 effective unpaired spins. The theoretical number is (I]. The magnetic moments 

in a crystal are close together, and they interact rather strongly. The discrepancy is most likely due to an 
interaction among the magnetic moments. 

E20.31(b) The molar susceptibility is given by 

Mn2+ has five unpaired spins, so S = 2.5 and 

Xm = 
(6.022 X 1023 mol-l) X (2.0023) 2 X (4rr X I0-7 T2 r 1 m3 ) 

3(1.381 x 10 23 J K ') 

(9.274 X 10-14 JT- 1) 2 X (2.5) X (2.5 +I) 
x -'------(:::-29"'8"'K"'>--'--'---'--.c 

= 11.85 x w-7 m3 mol- 1 I 

E20.32(b) The orientational energy of an electron spin system in a magnetic field is 

The Boltzmann distribution says that the population ratio r of the various states is proportional to 

(-[',.£) 
r = exp /(f" 
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where D.£ is the difference between them. For a system with S = 1, the Ms states are 0 and ±I. So 
between adjacent states 

r=ex (-g,{LsMs.9J) =ex (-(2.0023) x (9.274x I0-24 JT- 1
) x (I) x (15.0T)) 

p kT p (1.381xi0 23 JK 1)x(298K) 

=I o.935l 

The population of the highest-energy state is r2 times that of the lowest; r2 =I 0.8731 

Solutions to problems 

Solutions to numerical problems 

P20.2 A large separation between the sixth and seventh lines relative to the separation between the fifth and 

sixth lines is characteristic of a I simple (primitive) cubic lattice 1- This is readily seen without indexing 

the lines. The conclusion that the unit cell is simple cubic is then confirmed by the presence of reflections 
from (I 00) planes. 

A 
d1oo =a [20.1] = -.- [20.5] 

2 sm e 

154pm 
a- - 342 m 

- (2) X (0.225) -I p I 

P20.4 Note that sinceR = 28.7 mm, e /deg = ( ~) x ( I!O) = Djmm. Then proceed through the following 

sequence: 

1. Measure the distances from the figure. 
2. Convert from distances to angle using 8/deg = Djmm. 
3. Calculate sin28. 

4, Find the common factor A =A 2 f4a 2 in sin2 e = (A 2 j4a2) (h2 + k2 + /2). 

5. Index the lines using sin2 8/ A = 11 2 + k2 + P. 
6. Solve A= A2j4a2 fora. 

(a) -------------------

Djmm 

e;deg 
103 sin28 

22 30 36 44 50 58 67 77 

22 30 36 44 50 58 67 77 
140 250 345 482 587 719 847 949 

Analysis of face-centered cubic possibility 

(h k I) 

104A 
(I II) (200) (211) (311) (222) (400) (331) (420) 

467 625 431 438 489 449 446 475 
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(b) 

Analysis of body-centered cubic possibility 

(hkl) (II 0) (200) (211) (220) (31 0) (222) (321) (400) 

!04A 700 625 575 603 587 599 605 593 

Begin by performing steps 1-3 in order to determineD, e, and sin2 8 and place them in tabular form as 

above. It is now possible to reject the primitive (simple) cubic cell possibility immediately because 
the separation between the sixth and seventh lines is not significantly larger than the separation 

between the fifth and sixth lines (see Problem 20.2 and Figure 20.22). 

The relatively large uncertainties of the separation measurements force the modification of steps 
4 and 5 for the identification of the unit cell as being either face-centered cubic or body-centered 

cubic. We analyse both possibilities by calculating the common factor A = sin2 () jh2 + k2 + /2) for 
each datum in each case. Comparison of the standard deviations of the average of A determines the 

unit cell type. 

The analysis of both the face-centered cubic and body-centered cubic possibilities is found in the 

above table. Successive reflective planes are determined with the rules found in Figure 20.22. 

fcc possibility : 

bee possibility : 

A"·= 0.0478, "A= 0.0063 (13percent) 

A"· =0.0611, riA =0.0016 (6percent) 

These standard deviations (a A) indicate that the cell type is I body-centered cubic J 

The Q test of the (I I 0) reftection datum for A yields Q = 0.6. Consequently this datum may be 

rejected with better than 95 percent confidence. This yields a better average value for A. 

A"· = 0.0598, rr A = 0.0016 (3 percent) 

l. !54 pm 
Then a=--= = 315pm 

2AI/2 (2) x (0.0598)1/2 

4R = .J3a, so I R = 136 pm I [Fig. 20.1 above with r = R] 

D/mm 21 25 37 45 47 59 67 72 
8/deg 21 25 37 45 47 59 67 72 
103 sin2 f) 128 179 362 500 535 735 847 905 

Analysis of face-centered cubic possibility 

(h k /) (I I I) (2 0 0) (2 2 0) (3 I I) (2 2 2) (4 0 0) (3 3 I) (4 2 0) 

104A 427 448 453 455 446 459 446 453 

Analysis of body-centered cubic possibility 

(Ilk I) (I I 0) (2 0 0) (2 I I) (2 2 0) (3 I 0) (2 2 2) (3 2 I) (400) 
!04A 640 448 603 625 535 613 605 566 
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Following the procedure established in part (a), the above table is constructed. 

fcc possibility : 

bee possibility : 

A"·= 0.0448, "A= 0.0010 (2 percent) 

A"· = 0.0579, "A = 0.0063 (II percent) 

The standard deviations indicate that the cell type is I face-centered cubic I 

Then 
!. 154pm 

a= 2AI/2 = (2) x (0.0448)1/2 = 1
364 pm I 

4R=.Jia, so R=ll29pml 

P20.6 When a very narrow X-ray beam (with a spread of wavelengths) is directed on the center of a genuine 
pearl, all rhe crystallites are irradiated parallel to a trigonal axis and the result is a Laue photograph with 
6-fold symmetry. In a cultured pearl the narrow beam will have an arbitrary orientation with respect to the 
crystallite axes (of the central core) and an unsymmetrical Laue photograph will result. (See J. Bijvoet 
et a/., X-ray Analysis of Crystals. Butterworth (1951 ).) 

P20.8 e(IOOK)=22°2'25", e(300K)=21°57'59" 

sine(IOOK) = 0.37526, sine(300K) = 0.37406 

sin e(300 K) a(IOO K) 
--,--;;-;.;=~ = 0.99681 = [see Problem2!.7] 
sin e(IOO K) a(300 K) 

!.../3 (154.062 pm) x ../3 
a(300 K) = -- = = 356.67 pm 

2 sine (2) X (0.37406) 

a(IOOK) = (0.99681) x (356.67pm) = 355.53pm 

8a 356.67- 355.53 3 
--; = 

355
.
53 

= 3.206 x w-

8 v 356.673 - 355.533 -3 
V = 355.533 = 9.650 X JO 

1 ov 9.560 x w-3 I _, _1 I 
Clvolume = \1 DT = ZOOK = 4.8 X 10 K 

1 8a 3.206 x w-3 I I 
" = 1.6 x 10-5 K- 1 

volume= -;;oT = 200K . . 

P20.10 V = abc sin fJ 

and the information given tells us that a= 1.377b, c- = 1.436b, and f3 = 122°49'; hence 

V = (1.377) x (1.436b3) sin 122°49' = 1.662b3 

Since p = NM fVNA = 2M /(1.662b3 NA) we find that 

b- ( 2M )1/3 
- 1.662pNA 

( 
(2) x (128.18gmol- 1) 

= ( 1.662) X ( 1.152 X 106 g m-3) X (6.022 X J023 mol ) 

1/3 

1) = 605.8 pm 
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Therefore, a = 1834 pm I· b = 1606 pm I· c = 1870 pm I 

As in Example 20.4 of the text we use 

Because V is unknown we work with 

V p(x) =f(x) 

j(x) = 30 + 16.4cos(2rrx) + 13cos(4rrx) + 8.2cos(6rrx) +II cos(8rrx) 

- 4.8 cos( I Orr x) + 10.8 cos(l2rr x) + 6.4 cos(l4rr x) - 2 cos( 16rr x) 

+ 2.2cos(l8rrx) + 13cos(20rrx) + 10.4cos(22rrx)- 8.6cos(24rrx) 

- 2.4cos(26rrx) + 0.2cos(28rrx) + 4.2cos(30rrx) 

A plot of V p(x) =J(x) is shown in Figure 20.3. 

Electron Dens icy 
150 ,---,------=,=:.:..::.::....::::,::_----,----, 

100 

Vp(x) 

" 

-so ':-
0 
----:'

0
_-::
2
----:'

0
_-:-, ----:'

0
_.,-
6 
---

0
-:'_

8
,.------' 

Figure 20.3 

In a monoclinic cell, the area of parallelogram faces whose sides are a and c is 

so the volume of the unit cell is 

V = abccos({J - 90°) = ( 1.0427 nm) x (0.8876 nm) x ( 1.3777 nm) x cos(93.254° - 90°) 

= 1.2730 nm3 

The mass per unit cell is 

Ill= pV = (2.024gcm-3) X (J.2730nm3) X (10-? cmnm- 1) 3 = 2.577 X 10-2 ] g 
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The monomer is CuC7HnNsOsS, so its molar mass is 

M = 63.546 + 7( 12.011) + 13( 1.008) + 5( 14.007) + 8( 15.999) + 32.066 g moi- 1 

= 390.82 g mol- 1 

The number of monomer units, then, is the mass of the unit cell divided by the mass of the 

monomer 

mNA (2.577 X 10-21 g) X (6.022 X 1023 mol-l) l,;l 
N = -- = -'-------""------'-----,,--------'- = 3.97 or ~ 

M 390.82 g mol 1 

The problem asks for an estimate of 6.rH 9 (CaCI). A Born-Haber cycle would envision formation of 
CaCI(s) from its elements as sublimation ofCa(s), ionization ofCa(g), atomization ofCh(g) electrorn 

gain of Cl(g), and formation of CaCI(s) from gaseous ions. Therefore 

Before we can estimate the lattice enthalpy of CaCI, we select a lattice with the aid of the radius-ratio 
rule. The ionic radius for Cl- is 181 pm; use the ionic radius of K+ (1381) for ca+ 

138pm 
y = -- =0.762 

181 pm 

suggesting the CsCI structure. We can interpret the Born-Mayer equation (eqn 20.15) as giving the 
negative of the lattice enthalpy 

The distanced is 

d = (138+ 181)pm = 319pm 

so 0 (1.763) X ((I)(- I)[ X (6.022 X IQ23 moi-l) X (1.602 X 10-9 C)2 ( 34.5pm) 
b. L H "' I - -::-:c:-'--

4rr(8.854 X 10 12j I C2 m 1) X (319 X 10 12 m) 319pm 

b.LH 0 "'6.85 x 105 J mol- 1 = 685 kJ mol- 1 

The enthalpy of formation, then, is 

b.rH0 (CaCI. s) "' [ 176 + 589.7 + 2(121.7 - 348.7) - 685] kJ mol- 1 = 1-373 kJ mol-l 1. 

Although formation of CaCI(s) from its elements is exothermic, formation of CaCI2(s) is still more 

favored energetically. Consider the reaction 

2CaCI(s)-> Ca(s) + CaCI2(s) 
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for which t>H" = t>rH"(Ca) + t>rH" (CaClz)- 2t>rH" (CaCI) 

"' [0- 795.8- 2( -373)] kl moi- 1 

t>H" "' -50 kl moi- 1 

Note: Using the tabulated ionic radius of Ca (i.e. that of Ca2+) would be less valid than using the 
atomic radius of a neighboring monovalent ion, for the problem asks about a hypothetical compound 

of monovalent calcium. Predictions with the smaller Ca2+ radius (I 00 pm) differ substantially from 
those listed above: the expected structure changes to rock-salt, the lattice enthalpy to 758 kJ mol-l, 

t>rH"(CaCI) to -446kl mol- 1 and the final reaction enthalpy to +96 kl mol- 1• 

v_ 

rfro Monomers Dimer Figure 20.4(a) 

(a) IL+o'- = (Vr+o,-111-l>/ro) = (c+,.-.1 Vrl + C+o,-.2Vr2IILI'iro) 

(b) 

= C+o'-·' (>/rtiiLI'iro) + c+o,-.2 (>/rzi!LI>/ro) 

But ('irtiiLI'iro) = (>/rzlll-1>/ro) = !Lmoo. so 

f..L+or- = (c+or-,1 + C+or-,1) JLmon 

and (if- V+or-) 1/l+or- = 0 

fJ ) _ - 1/t+or- = 0 
Vmon - V+or-

where 

1 
) >jr +o'- = 0 where 

X+or-

. I I = X~or- - I = 0 
X+or-

X+or- = (iimon - Y+or-) / fJ = ±I and ii+or- = Ymon ± fJ 

and y_ = Ymon + f3 

The ratio of J.L~! ll~ (and the relative intensities of the dimer transitions) doesn't depend upon f3 or 

8 because J.l+ = 0. To see this, we use the coefficients of the normalized wavefuncEions for 1/1+ and 

'ir- and the overlap integralS= (>/rtl>/rz). 

I )(c+"'-·')-o 
X+or- C+or-,2 

where X+or- =±I 

(i) 
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2.6 
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2.5 

2.45 

v_ 
2.4 

2.35 L_ ___ L_ ___ J_ __ _J ___ _J ___ _j 

0 0.2 0.4 0.6 0.8 

Of(rr/2) Figure 20.4(b) 

The coefficients must also satisfy the normalization condition. 

(1/t +or-11/t +or-) = {c+or-.Jl/Ji + C+or-.2 1/lzlc+or-, Jl/ri + C+or-.21/12) 

- 2 2 2 s - C+or-,1 + C+or-,2 + C+or-.!C+or-.2 

= C~or-,1 + C~or-.1- 2x+or-C~or-,1S = 1 (ii) 

Thus, 

{2(1-S)j 112 

and 

c __ , = '"'t2,--(_1_+_S::-)-.} 1"'12 C-,2 = c-.1 

' 2 ( )

2 

2 '"; = ('"+) = (c+.l + c+.2) !'moo = (c+.l - c+.l) = 0 
J.L_ fl.- (c-.1 + C-,2) tl-mon C-.1 + C-,1 

(c) The secular determinant for N monomers has the dimension N x N. 

iimon - vdimer v 0 
v - - v Vmon - Vdimcr 

0 v iimon - iidimer =0 

- - 2 (klr) VJimcr = Vmon + V COS --
N+1 

k= 1,2,3, ... ,N [20.21] 
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' v = {3 (O) = fLow" 
4.rrsohcr3 ( 

' ) -JL' 1- 3cos-o = 111011 

2rreolicr3 

The plot in Figure 20.4(c) shows the dimer transitions fore ~ 0 and N ~ 15. The shape of the 

transition distribution changes slightly with Nand transition energies are symmetrically distributed 

around the monomer transition. The lowest energy transition changes only slightly with N giving 

a value that goes to 25000 cm- 1 + 2V = 25 000 cm- 1 + 2 x (-1289 cm- 1) = 22422 cm- 1 as 

N 4- oo. 

Since the model considers only nearest neighbor interactions, the transition dipole moment of the 

lowest energy transition doesn't depend upon the size of the chain. 

2.8 

2.7 

2.6 

vdimcr 2.5 
!OJ cm- 1 

2.4 

2.3 

2.2 
2 4 6 8 

k 

10 12 14 

Figure 20.4(c) 

The relationship between critical temperature and critical magnetic field is given by 

Solving forT gives the critical temperature for a given magnetic field: 

1/' 

( 
H(T))'i

2 
( 20x!03Am-

1
)-

T=T, 1--'- =(7.19K)x 1- 1 =I6.0KI 
H,(O) 63901 Am 

Solutions to theoretical problems 

Consider for simplicity the two-dimensional lattice and planes shown in Figure 20.5. 

The (hk) planes cut the a and b axes at afh and bfk, and we have 

. d hd d kd 
sma=--=-, 

(afh) a 
cos a=--=-

(bfk) b 
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" 
alii 

a 

d 

a 
b 

Figure 20.5 

Then, since sin2 a+ cos2 a = I, we can write 

(':)' + (k:)' =I 

and therefore 

~,=G)'+ G)' 
The same argument extends by analogy (or further trigonometry) to three dimensions, to give 

where N is the number of atoms in each unit cell, Va their individual volumes, and Vc the volume of the 

unit cell itself. Refer to Figure 20.6. 

(a) N= I, 

!= 

4 v. = -1[1'3 ,\ 3 , V, = (2R)3 

= :::. = I o.s2361 
6 

Figure 20.6 
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(b) 

(c) 

N= I, 

f = 2 x (4/3)rr~' = rrv'3 =I 0.68021 

( 4R!J3)' 8 

N=4, 

4 x (4/3)rrR3 rr I I 
!= =- = 0.7405 

(2,/2R)3 3,/2 

F _ '""l'.e2JTi(hr;+ky;+l:;) 
hkl- ~jl [20.7] 

[body diagonal of a unit cube is v'3J 

For each A atom use k!A (each A atom shared by eight cells) but usefs for the central atom (since it 
contributes solely to the cell). 

+ fse21fi(h+k+l) 

=fA + ( -l)Ch+k+IJ!s [h, k, I are all integers, e'" = -I] 

(a) !A = f, fs = 0; Fhkl =fIno systematic absences I 

(b) /s =!/A; Fhkl =fA [1 + ~(-l)(h+k+lll 

Therefore, when h +k +I is odd, hkl =fA (I - n = ~fA, and when h +k+l is even, Fhkl = if A· 

That is, there is ani alternation of intensity lu ex F2)according tal whether h + k +I is odd or even 1. 

(c) fA =Is =f; Fh+k+l =f (I+(-!)"+'+')= 0 if h + k +I is odd. 

Thus, I all h + k + I odd lines are missing I· 

(a) The density of energy levels is: 

dk (dE)-' 
p(E) = dE = dk 

dE d ( krr ) 2rrf3 krr 
where dk = dk ct + 2/3 cos N + 1 = - N + 1 sin N + 1 

N +I ( krr )-I so p(E) = --- sin--
2rrf3 N + I 
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Unlike the expression just derived, the relationship the problem asks us to derive has no trigono
metric functions and it contains E and a within a square root. This comparison suggests that the 

trigonometric identity sin2 B + cos2 8 = I will be of use here. Let (} = hr f(N + I); then 

sine= 1(1-cos28) 112 

however, cos() is related to the energy 

£-a 
E =a+ 2{Jcose so cose = ~ 

. -(N + 1)/2rr{J 
Fmally, p(£) = 11, [1- (£- aj2{J)2] -

(b) The denominator of this expression vanishes as the energy approaches a ± 2{3. Near those limits, 
E- a becomes ±2{3, making the quantity under the square root zero, and p(£) approach infinity. 

If a substance responds nonlinearly to an electric field £, then it induces a dipole moment: 

1-' = rx£ + {J£2 

If the electric field is oscillating at two frequencies, we can write the electric field as 

E = El COS WI/ +E2COSW21, 

and the nonlinear response as 

Application of trigonometric identities allows a product of cosines to be re-written as a sum: 

cos A cos B = 1 cos(A - B) + ~ cos(A + B). 

Using this result (a special case of which applies to the cos2 terms), yields: 

{J£2 = ~{J[£1(1 +cos 2w,l) + £ 2(1 +cos 2w,t) + 2£,£,(cos(wt + w2)1 + cos(w, - w2)1]. 

This expression includes responses at twice the original frequencies as well as at the sum and difference 

frequencies. 

K 
N204(g) 2NO,(g) 

(l-a)11 2an amounts 

1-rx 2a 
mole fractions -- --

1+a 1+a 
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(~) p panial pressures (p = pjp0 here] 
1+a 

(2a/1 +a)2p 4a2 

K = -:-( :-1 --'_-a-/'"'1_+,---'a") = I - a 21' 

Now solve for a. 

' K a-=---. 
4p+ K ( 

K ) 1/2 

"= 4p+K 

( 
K ) 1/2 

The degree of dimerization is d = I - a = I - --- = 
4p+ K ( 

1 ) 1/2 

I- 4(p/K) +I 

The susceptibility varies in proponion to a = I -d. As pressure increases, a decreases, and the 

susceptibility I decreases 1. 

To determine the effect of temperature we need l::l.rH ::::::: !:1rH& for the reaction above. 

t>.,H& = 2 x (33.18 kJ mol-l) - 9.16 kJ mol- 1 = +57.2 kJ mol- 1 

A positive 6.rHe indicates that N02(g) is favored as the temperature increases; hence the susceptibility 

I increases I with temperature. 

Solutions to applications 

The density of a face-centered cubic crystal is 4mjV where 111 is the mass of the unit hung on each lauice 

poim and Vis the volume of the unit cell. (The 4 comes from the fact that each of the cell's 8 vertices 

is shared by 8 cells. and each of the cell's 6 faces is shared by 2 cells.) 

M = ~(1.287gcm-3 ) x (6.022 x 1023 mol- 1) x (12.3 x I0-7 cm) 3 

= 13.61 x 10' gmol- 1 I 

Single-walled carbon nanotubes (SWNT) may be either conducLors or semiconductors depending upon 

the tube diameter and the chiral angle of the fused benzene rings with respect to the tube axis. Van der 

Waals forces cause SWNT La stick together in clumps. which are normally mixtures of conductors and 

semiconductors. SWNT stick to many surfaces and they bend. or drape, around nano-sized features that 

are upon a surface. 

Only the semiconductor SWNT are suitable for the preparation of field-effect transistors (FET) so 

IBM researchers (Scie11ce. April 27. 2001) have developed a destructive technique for eliminating 

conducting tubes from conductor/semiconductor clumps with a current burst. The technique can also 

be used to remove the outer layers of multi walled tubes that consist of multiple concentric tubes about 

a common axis. Bandgaps increase as the diameter of multi walled tubes is decreased which means that 

the destructive technique can be used to tailor a semiconductor tube to specific requirements. 
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large variety of chiral angles 

Various types of nanotubes 

J. 

IlL l 

1 
1 
1 l:Jr 11 

[ c;;,(':t 1 
I Eii. 1 1 

[ I I 1 

) 

) 

J 
I 

0 
• ,-

~ Tubeaxis 

In tp://on line. i tp. ucsb.cd u/on 1 i nc/ 
qh<~ll_c98/dckkcrfoh/ l S.html 

hup:/ /on I i ne. i tp. ucsb.ed u/ 

on I i ne/qha II_ c9 8/Uekker/oh/08. ht m I 

Multiwalled Nanotubes have diameters between I nm and 

30 nm with an imerlayer spacing of 0.34 nm. 

h up: lion I i ne. i 1 p. ucsb.edu/on I i ne/qha I l_ c98/dekker/oh/05 .Ill rn I 

Figure 20.7(a) 

Here is a list of ideas for producing transistors with SWNT. 

Cees Dekker and students (S.J. Tans et at., Nature, 393,49 ( 1998)) have draped a semiconducting carbon 

nanotube over metal electrodes that are 400 nm apan mop a silicon surface coated with silicon dioxide. 

A bias voltage between the electrodes provides the source and drain of an FET. The silicon serves as a 

gate electrode. By adjusting the magnitude of an electric field applied to the gate, current flow across 

the nanotube may be turned on and off. 
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Nanotube 

Cso=u=oc=e=(A=u=)~~~~~~JD~nu~·~n~(A~u2) 
gate oxide[StO:d 

g.tll' IStl 

huo: //www. research .i bm.com/ 
nanoscience/fet.html 

hUp://online.itp.ucsb.cdu/ 
online/qhall_c98/dekker/oh/50.html 

Figure 20.7(b) 

Figure 20.7(c) 

http://www.usc.edu/dept/ee/People/Faculty/Zhou/zhougroup/research.html Figure 20.7(d) 
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A section of a single nanotube may be exposed to potassium vapor to produce a p--n junction. 

A single-electron transistor (SET) has been prepared by Cees Dekker and coworkers (Science, 293, 76, 

(2001)) with a conducting nanotube. The SET is prepared by putting two bends in a tube with the tip of 

an AFM. Bending causes two buckles that, at a distance of 20 nm, serves as a conductance barrier. When 

an appropriate voltage is applied to the gate below the barrier, electrons tunnel one at a time across the 

barrier. 

Figure 20.7(e) 

A semiconductor tube may be fused to a conductor tube to produce a SET similar to an SET. 

Flow of current 

http://www.geocities.com/ 
fikrethasmer/physics/ 
electronic/electronic.html 

Figure 20.7(0 
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21 Molecules in motion 

021.2 

Answers to discussion questions 

Diffusion is the migration of particles (molecules) down a concentration gradient. Diffusion can be 

interpreted at the molecular level as being the result of the random jostling of the molecules in a fluid. 
The motion of the molecules is the result of a series of short jumps in random directions, a so-called 

random walk. 

In the random walk model of diffusion, although a molecule may take many steps in a given time, it 
has only a small probability of being found far from its starting point because some of the steps lead it 

away from the starting point but others lead it back. As a result, the net distance traveled increases only 
as the square root of the time. There is no net fl. ow of molecules unless there is a concentration gradient 

in the fluid, also there are just as many molecules moving in one direction as another. The rate at which 
the molecules spread out is proportional to the concentration gradient. The constant of proportionality 

is called the diffusion coefficient. 

On the molecular level in a gas, thermal conduction occurs because of random molecular motions in 
the presence of a temperature gradient. Across any plane in the gas, there is a net flux of energy from 

the high temperature side, because molecules coming from that side carry a higher average energy per 
molecule across the plane than those coming from the low temperature side. In solids, the situation is 

more complex as energy transport occurs through quantized elastic waves (phonons) and, in metals, also 

by electrons. Conduction in liquids can occur by all the mechanisms mentioned. 

At the molecular (ionic) level, electrical conduction in an electrolytic solution is the net migration of 

ions in any given direction. When a gradient in electrical potential exists in a conductivity cell there 
will be a greater flow of positive ions in the direction of the negative electrode than in the direction of 

the positive electrode, hence there is a net flow of positive charge toward the region of low electrical 

potential. Likewise a net flow of negative ions in the direction of the positive electrode will occur. In 
metals, only negatively charged electrons contribute to the current. 

To see the connection between the flux of momentum and the viscosity, consider a fluid in a state of 

Newtonian flow, which can be imagined as occurring by a series of layers moving past one another 
(Figure 21.11 of the text). The layer next to the wall of the vessel is stationary, and the velocity of 

successive layers varies linearly with distance, z. from the wall. Molecules ceaselessly move between 
the layers and bring with them the x-component of linear momentum they possessed in their original 

layer. A layer is retarded by molecules arriving from a more slowly moving layer because they have 

a low momentum in the x-direction. A layer is accelerated by molecules arriving from a more rapidly 
moving layer. We interpret the net retarding effect as the fluid's viscosity. 
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According to the GroLthuss mechanism, there is an effective motion of a proton that involves the 

rearrangement of bonds in a group of water molecules. However, the actual mechanism is still highly 

contentious. Attention now focuses on the H9ot unit in which the nearly trigonal planar H30+ ion 

is linked to three strongly solvating H20 molecules. This cluster of atoms is itself hydrated, but the 

hydrogen bonds in the secondary sphere are weaker than in the primary sphere. It is envisaged that the 

rate-determining step is the cleavage of one of the weaker hydrogen bonds of this secondary sphere (Fig

ure 21.16a of the text). Afler this bond cleavage has taken place, and the released molecule has rotated 

through a few degrees (a process that takes about l ps),there is a rapid adjustment of bond lengths and 

angles in the remaining cluster. to form an H50i cation of structure H20 · · · H+ · · · OH2 (Figure 21.16b). 

Shortly after this reorganization has occurred, a new H90t cluster fonns as other molecules rotate into a 

position where they can become members of a secondary hydration sphere, but now the positive charge 

is located one molecule to the right of its initial location (Figure 2l.l6c). According to this model, there 

is no coordinated motion of a proton along a chain of molecules, simply a very rapid hopping between 

neighboring sites, with a low activation energy. The model is consistent with the observation that the 

molar conductivity of protons increases as the pressure is raised, for increasing pressure ruptures the 

hydrogen bonds in water. 

The maximum flux in mediated transport is achieved at very high concentrations of the transported 

species. Under such conditions, the transported species A flood the carrier species C, pushing practically 

all of the latter imo the form of the AC complex. (The mathematical condition for saturation of the flux 

at lmax is that [A] » K, the equilibrium constant for dissociation of the AC complex; this condition puts 

practically all C imo the complex, regardless of its inherent stability.) The value of lmax depends on the 

concentration of carrier species, [C]o. For a given value of [C]o. lmax represents the transport capacity 

of the "fleet" of carriers. The oversupply of A keeps the carriers transporting at full capacity. 

Solutions to exercises 

E21.1(b) (a) The mean speed of a gas molecule is 

c= (~R;f' 
so c(He) = (M(Hg))

1
i
2 = (200.59)

112 =17_079 1 
c(Hg) M(He) 4.003 

(b) The mean kinetic energy of a gas molecule is ~ mc2, where cis the root mean square speed 

So ~ mc2 is independent of mass, and the ratio of mean kinetic energies of He and Hg is OJ 
E21.2(b) (a) The mean speed can be calculated from the formula derived in Example 21.1. 

Z· = (-8_R_T) 112 = (8 x (8.3141 K-
1 
mol-

1
) x (298 K)) 

112 
= j 4_75 x 10, m s-l I 

:reM :rr x (28.02 x J0-3 kg mol I) L..:.c::....:_:..:_c::.:._'-..J 
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(b) The mean free path is calculated from A= kT/(2 112ap) [21.13] with a= ru/2 = rr x (3.95 x 
IQ-10 111)2 = 4.90 X IQ-19 1112 

(1.381 x I0-23JK- 1) x (298K) 
Then, A=--------------~------------~~---,--~~--~----~--

2112 X (4.90 X J0-19m2) X (J X JQ-9Torr) X (.....!..ill!!!_) X (UJl3xi(JSPa) 
760Torr 1 atm 

(c) The collision frequency could be calculated from cqn 21.11, but is most easily obtained from 

eqn 21.12, since A and C have already been calculated 

C 4.7Sxl02 ms- 1 
I .., 1 c=-= =lxlo--s- 1 

A 4.46 x lO"m 

Thus there are 100 s between collisions, which is a very long time compared to the usual timescale of 

molecular events. The mean free path is much larger than the dimensions of the pumping apparatus 

used to generate the very low pressure. 

kT 
p= -,-,,- [21.13] 

2 -crA 

., If' 
a =rrcP. d= (;)

112 
= (

0
'
36JTnm-) - =0.34nm 

(1.381 X I0-23JK-') X (298K) I 7 I 
'= = 2.4 x 10 Pa 1 

(2'1') x (0.36x 10 "m') x (0.34x 10 9 m) 

This pressure corresponds to about 240 atm. which is comparable to the pressure in a compressed gas 

cylinder in which argon gas is normally stored. 

E21.4(b) The mean free path is 

kT (1.38lxl0-21JK- 1)x(217K) I 1 
A=--= =4.lxl0-7 m 

2112
ap 2'1'[0.43 x (J0-9m)'] x (12.1 x 101 Paatm- 1) 

E21.5(b) Obtain data from Exercise 21.4(b) 

The expression for.: obtained in Exercise 21.5(a) is::= [16j(;rmkT)] 112 ap 

Subsliluling a = 0.43 nm 2• p = 12.1 x 103 Pa. m = (28.02 u), and T = 217K we obtain 

4 X (0.43 x J0- 18 m2) x (12.1 x 101 Pa) 

[rr X (28.02) X (1.6605 X J0-27 kg) X (1.381 X l0-21 JK- 1) X (217K)] 112 

=[9.9 x lO's- 1 [ 

E21.6(b) The mean free path is 

kT (1.381 x I0-23 JK- 1) X (25+273)K 5.50 X I0-1 mPa 
A=--= =-----

2'1'ap 2'1' [o.52 x (to-9 mJ']p P 
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(a) 
5.50 x w-3 m Pa I I 

A= ')=3.7x!0-9 m 
(15atm) x (!.013x !05 Paatm 

(b) 
5.55 x w-3 m Pa I 

0 8 I A= = 5.5 x I - m 
(l.Obar) x (!05 Pabar 1) 

(c) 
5.55 X w-3 m Pa I 

A = 1) = 14.1 x I o-5 m 
(l.OTorr) x (1.013 x IO'Paatm 1j760Torratm 

E21.7(b) The fraction F of molecules in the speed range from 200 lO 250m s- 1 is 

where[ (v) is the Maxwell distribution. This can be approximated by 

F~J(v)~v=4rr -- v2 exp ---- b.v, ( M )'12 ( Mv') 
2rrRT 2RT 

with/ (v) evaluated in the middle of the range 

F"' 4rr 44.0 X w-'kgmol-1 X (225ms-')' 
( )

3/2 

2rr (8.3145JK 1 mol 1) x (300K) 

(
-(44.0 X I0-3 kgmoJ-l) X (225ms- 1)

2
) ( -1) 

x exp x 50ms , 
2(8.3!45JK 1mol 1)x(300K) 

'I F-"'-9-.6-x_l_0_,-,,1 

COMMENT. The approximation we have employed, taking f (v) to be nearly constant over a narrow range of 

speeds, might not be accurate enough, for that range of speeds includes about 10 percent of the molecules. 

You may wish to do the integration without this approximation (a considerably more complicated process) 

to see how much difference there is. 

E21.8(b) The number of collisions is 

pAt 
N = ZwAt = ---'---= 

(2rr mkT) 112 

(Ill Pa) x (3.5 X 10-3 m) X (4.0 X 10-2 m) X (lOs) 

= (2rr X (4.00u) x (1.66 x 10-27kgu-l) x (1.381 X 10-23JK-1) x (1500K)j 112 

= 15.3 x 1021 I 

E21.9(b) The mass of the sample in the effusion cell decreases by the mass of the gas which effuses out of it. 
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That mass is the molecular mass times the number of molecules that effuse out 

mpAt m 1/2 ( M ) 
1

/:2 
l::!..m = mN = mZwAt = I/" =pAt(--) =pAt --

(2rrmkT) - 2rrkT 2rrRT 

= (0.224Pa) X rr X(! X 3.00 X 10-3 m f X (24.0Qh) X (3600sh-l) 

300 x 10-3 kg mol- 1 

{ } 

1/2 

X 2rr x (8.3145JK 1mol 1) X (450K) 

= 14.98 x to-• kg I 

E21.10(b) The Lime dependence of the pressure of a gas effusing without replenishment is 

p = poe -r/r where r ex: -Jiii 

The time 1 it takes for the pressure to go from any initial pressure Po to a prescribed fraction of that 

pressure fpo is 

fpo 
1 = Tin - = r In/ 

PO 

so the time is proportional to r and therefore also to ../iii. Therefore, the ratio of times it takes two 
different gases to go from the same initial pressure to the same final pressure is related to their molar 
masses as follows 

and 

So ( _ 1) (82.3s)
2 

I _ 1 1 Mnuorocarbon = 28.01 gmol X -- = 554 g mol 
18.5 s 

E21.11(b) The time dependence of the pressure of a gas effusion without replenishment is 

P =Po e-r/r so I= r lnpo(P 

V (2rrm)''2 

wherer =- --
Ao kT 

= ~ (2rrM)''' 
Ao RT 

( ) ( ) 

1/2 
22.0 m3 2rr x (28.0 x w-3 kg mol- 1) 5 = , X = 2.4 X IQ S 

rr x (0.50 x IQ-3 mt (8.3145] K-l mol I) X (293 K) 

122kPa I I 
so 1 = (8.6 x 105 s) In 

105 
kPa = 1.5 x 104 s 

E21.12(b) The flux is 

dT I dT 
1=-K-=--!.Cv c[X]-

d;:: 3'm dz 
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where lhe minus sign indicates How toward lower temperature and 

I 
A--- ,fiNe;, (

8kT) 
112 

(8RT) l/
2 

c= - = - and[M]=n/V=N/NA 
1r m rr M 

So J = _ 2Cv,m (RT)
112 

dT 
3r;NA rrM dz 

( 

2 x (28.832- 8.3145) J K- 1 mol-' ) 

= 3 X [0.27 X (I0-9 m) 2] X (6.022 X 1023 mol- 1) 

(

(8.3145JK-l mol- 1) x (260K))
1
/
2 

_ 1 x x (3.5 K m ) 
rr x (2.016 x IQ-3kgmol 1) 

=10.17Jm-2 s-'l 

E21.13(b) The thermal conductivity is 

K = -ACv.mC[X] = ~ - so a= _v_._"' -I 2C ( RT ) 
1
/
2 

2C ( RT ) 
1
1
2 

3 3r;NA rrM 3KNA rrM 

K = ( 0.240 mJ cm-2 s- 1) X (K cm-'r' = 0.240 X w-' J m- 1 s- 1 K-l 

( 
2 X (29.125- 8.3145)JK-I mol-l ) 

SO r; = 3 X (0.240 X 10 I Jm Is I K 1) X (6.022 X 1023 mol 1) 

X ((8.3145JK-I mol- 1
) X (298K))

1
/
2 

rr x (28.013 x IQ-3 kg mol 1) 

= 11.61 X 10-\9 m2 1 

E21.14(b) Assuming the space between sheets is filled with air, the flux is 

J = -k~: = [ (o.241 x w-3 Jcm-2s-') x (Kcm-'f'] x C50 ~0(~:~ K]) 

= 1.4S X w-3 J cm-2 s- 1. 

So the rate of energy transfer and energy loss is 

JA = (1.45 X w-3 J cm-2 s- 1) X (!.50m2 ) X (IOOcm m- 1) 2 = 122Js-' I 

E21.15(b) The coefficient of viscosity is 

I /2 Jf1 11 = ~AmNC = 2_ (mkT) so a = 2_ (mkT) -
3 3r; 1C 3ry 1C 

ry= 1.66JLP= 166x w-7 kgm- 1s- 1 
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soa=(3x(I66xl0\kgm Is 1)) 

X ((28.01 X I0-3 kgmol-l) X (1.381 X I0-23 JK- 1) X (273K))I/Z 

rr X ( 6.022 X 1023 mol 1) 

= \3.00 x 10- 19 m2 j 

E21.16(b) The rate of fluid flow through a tube is described by 

dV _ (P!o -p~"')rrr4 so . _ (16/rypodV 2 )
1
/
2 

dt - !6/rypo Pm- rrr4 dt +Pout 

Several of the parameters need to be converted to SI units 

I"= t(IS X 10-3 m)= 7.5 X 10-3 m 

and dV = 8.70cm3 x (10-2 mcm- 1)3 s- 1 = 8.70 x I0-6 m3 s- 1. 
dt 

Also, we have the viscosity at 293 K from the table. According to the T 112 temperature dependence, the 

viscosily at 300 K ought ro be 

(
300K)

112 
(300)

1
/
2 

ry(300K) = ry(293K) X -- = (176 x I0-7 kgm-l s- 1) x -
293 K 293 

= 1.78 x to-7 kgm- 1 s- 1 

. _ {(16(10.5m) x (178 x I0-7 kgm- 1s- 1) x 
Pm-

rr x (7.5 x 10-3 m) 4 

(1.00 x 105 Pa)) 

x (8.70 x 10-6 m3 s- 1) + (1.00 x 105 Pa)2 )'
12 

=11.00 xi05 Pa\ 

COMMENT. For the exercise as stated the answer is not sensitive to the viscosity. The flow rate is so low that 

the inlet pressure would equal the outlet pressure (to the precision of the data) whether the viscosity were 

that of N2 at 300 K or 293 K, or even liquid water at 293 K! 

E21.17(b) The coefficient of viscosity is 

r, = ~AmNC = ~ (mkT) 1/2 
3 3a rr 

= ( 2 ) x ((78.12 x 10-3 kgmol-
1
) x (1.381 x 10-23 J K-1) T) 112 

3 [o.88 x (10-9m)'] rr x (6.022 x 1023 mol- 1) 

= 5.7'5. X 10-7 x (T/K) 1/ 2 kgm- 1 ,-I 
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(a) At 273 K ry = (5.7'2 X w-7) X (273) 1/ 2 kg m- 1 s- 1 =I 0.95 X w-5 kg m- 1 s- 1 I 

(b) At298K ry = (5.7Zx 10-7) x (298) 112 kgm- 1 s- 1 =10.99 xl0-5 kgm- 1s-'l 

(c) At IOOOK 11 = (5.72 x w-7) x (1000) 112 kgm- 1 s- 1 =11.81 xl0-5kg m- 1 s- 1 1 

E21.18(b) The thermal conductivity is 

( ) 

1/2 
1 - 2Cv.m RT 

k = 3icCv.mc[X] = -- -
3aNA rrM 

(a) 
( 

2 x [C20.786- 8.3145) JK- 1 mol-'] ) 

K = 3 [ 0.24 X (l0-9 m)2
] X (6.022 X 1023 mol-l) 

X ((8.3145JK-I moi- 1
) x (300K))I/

2 

rr (20.18 x J0-3 kg mol 1) 

=(0.0114 Jm- 1 s- 1 K- 1 1 

The flux is 

so the rate of energy loss is 

(b) 
( 

2 x [(29.125- 8.3145) J K- 1 mol- 1
] ) 

K = 3 [0.43 X (l0-9m) 2
] X (6.022 X I02lmol-l) 

X (8.3145JK-I mol- 1
) X (300K))

1
/

2 

rr (28.013 x 10 3 kgmol 1
) 

= 19.0 X w-3 J m- 1 s- 1 K- 1 I 

The flux is 

so the rate of energy loss is 

E21.19(b) The rate of fluid flow through a tube is described by 

dV 

dt 

(p2 - p2 ) rr ,.4 
m out 

16/rypo 
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so the rate is inversely proportional to the viscosity, and the time required for a given volume of gas to 

How through the same tube under identical pressure conditions is directly proportional to the viscosity 

!1 111 fJJI2 
-=- SOTfz=-
12 1J2 /] 

(208JLP) x (18.0s) I I , 1 1 
rycFC = = 52.0 JLP = 52.0 X 10 kg m s 

72.0s 

The coefficient of viscosity is 

ry = ~l.mNc = (2_) X (mkT) 1/2 = (-2-) x (mkT) 1/2 
3 ~ rr 3rr~ rr 

so the molecular diameter is 

d = (3~J/2 X (m;Tr 

( )

1/2 

= 3rr (52.0 x JO~'kgm 1 s-1) 

X ((200x J0-3 kgmol- 1) X (1.381 X J0-23 JK- 1) x (298K))
1
/

4 

rr x ( 6.022 x J023 mol 1) 

= 9.23 X w-IO m = 1923 pm I 

K = -i.Cv.mc [X]= ----"""- -I 2C ( RT) 112 

3 3r>NA rrM 

( 

2x(29.125-8.3145)JK- 1mol- 1 ) ((8.3145JK- 1mol- 1)x(300K))
1
1' 

= 3[0.43 X (J0-9m) 2] X (6.022 X 1021mol-l) X rr X (28.013 X 10 3 kgmol 1) 

= 19.0 X w-3 J m- 1 s- 1 K- 1 I 

E21.21(b) The diffusion constant is 

I 2(RT)3f2 
D = 3 1-c = ::-3r>-p-cN::-A--c(:--rr-:-M-::)71 1"'2 

2[(8.3145JK- 1 mol- 1) x (298K)j'
12 

=-r------~~------~~~~--------~ 
3[0.43 X (J0-9 m)

2
]p(6.022 X J023 mol-l) X jrr (28.013 X J0-3 kgmol- 1)j 112 

1.07 m2 s- 1 

p/Pa 

The flux due to diffusion is 

J = -D d~] = -D! ( ~) =- (~) ~ 
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where the minus sign indicates flow from high pressure to low. So for a pressure gradient of 

0.10 atmcm- 1 

J = ( D((m' ,-') ) x (0.20 x 105 Pam-') 
(8.3145JK- 1 mol- 1

) x (298K) 

= (8.1 molm-2 s- 1) x (D/(m2 s- 1)) 

1.07m2s-l 2-ll 
D = = I 0.107 m s 

10.0 ~-----
and J = ( 8.1 mol m-2 ,-t) x (0.107) =I 0.87 mol m-2 ,-t I 

(a) 

1.07 m2 ,.-' I I D = = 1.07 x lo-5 m2 s- 1 

100 X 103 . . ~-------~ 
and J = (8.1 mol m-2 s- 1) X (1.07 X 10-5) = ls.7 X 10-5 mol m-2 s- 1 I 

(b) 

(c) 
l.07m2 s- 1 I 

D = = 7.13 xi0-8 m2 s-'l 
15.0 X 106 · · ~---cc----,----, 

and J = (8.1 mol m-2 s- 1) x (7.13 x 10-8) = ls.8 x 10-7 mol m-2 s- 1 I 

E21.22(b) Molar ionic conductivity is related to mobility by 

1-=zuF=(I)x (4.24x I0-8m2s-lv-') X (96485Cmo1-') 

= 14.09 x 10-3 S m2 mol-' I 

E21.23(b) The drift speed is given by 

- -
u/',.¢- (4.01 X I0-8 m2s- 1 y-') X (12.0V) -I I 

s - U£ - -- - , - L_:.4.::8_:.1 _:.X:_-_1 Q~-_5__:m=s-_1 
I 1.00 X I o-- m . 

E21.24(b) The limiting transport number for Cl- in aqueous NaCI at 25°C is 

t' = "- = 7.91 =10.6041 
- "+ + "- 5.19 + 7.91 

(The mobilities are in 10-8 m2 s- 1 y- 1.) 

E21.25(b) The limiting molar conductivity of a dissolved salt is the sum of that of its ions, so 

A~, (Mgl2) = ). ( Mg2+) + 21- W) = A::, (Mg (C,H,Oz),) + 2A~, (Nal) - 2A7,, (NaC,H,Oz) 

=(18.78 + 2(12.69)- 2(9.10)) mSm2mol- 1 =125.96mSm2 mol-'l 

E21.26(b) Molar ionic conductivity is related to mobility by 

A 
A= ZJJ.F so ll =-

zF 
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5.54 x Io-3 sm2rnol- 1 I _8 , _ 1 _
11 II= =. 5.74 X 10 m- V S . 

(l) x (96485Cmol ') 

7.635x10-3 Sm2 mol- 1 1 -8 2 -1-11 
II= =7.913 X 10 m V S 

(1) x (96485Cmol- 1) 

7.81 x 10-3 sm2 mol- 1 I 
11 = =. 8.09 x 10-8 m2 v-' s- 1 I 

(I) x (96485Cmol 1) L__c_ _____ _ 

E21.27(b) The diffusion constant is related to the mobility by 

D 
uRT 

zF 

(4.24 x 10-8 m2s-l y-l) X (8.3145JK-I mol- 1) X (298K) 
= 

(1) x (96485Cmol 1) 

= 'lt-.0-9_x_l 0-_,-9 -rn,-2 -, _-:-, I 

E21.28(b) The mean square displacement for diffusion in one dimension is 

(x2
) = 2Dr 

In fact, this is also the mean square displacement in any direction in Lwo- or three-dimensional diffusion 

from a concentrated source. In three dimensions 

r2 = x2 + y' + z2 so (r2) = (x2) + (i) + (z2) = 3 (x2) = 6Dt 

So the time il takes to travel a distance .j(!i} is 

(r2) (1.0 x 10-2 m)
2 

t=-= =14.lxl03 sl 
6D 6 (4.05 x 10-9m2 s-1) · . 

E21.29(b) The diffusion constant is related lo the viscosity of the medium and the size of the diffusing molecule 

as follows 

kT 
D=--

6:rr rya 

kT (1.381 x 10-23 JK- 1) x (298K) 
so {/ = --- = --~----~~----~~--~~~--~~~--C7 

6T117D 6rr(l.OOx IO-lkgm-ls-')x(l.055x 10-9m2s-'} 

a= 2.07 x 10-IO m = 1207 pm I 

E21.30(b) The Einstein-Smoluchowski equation related the diffusion constant to the unit jump distance and time 

).2 
D=--

2r 

;.2 
so r =--

2D 

If the jump distance is about one molecular diameter, or two effective molecular radii, then the jump 

distance can be obtained by use of the Stokes-Einstein equation 

kT kT 
D=--=--

6rr rya 3rr 17A 

kT 
so A=----

3Tti]D 
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(kT) 2 [(1.381 x 10-23JK- 1) X (298K)j
2 

and r = --'---'-,;----.,- = ------'-'-------~-------'------,-
18(rrry)2D3 18[rr (0.387 x 10-lkgm-1 s-1))2 x (3.17 x J0-9m2s-1) 3 

=1200 x!0- 11 sl=20ps 

E21.31(b) The mean square displacement is (from Exercise 21 .28(b)) 

Solutions to problems 

Solutions to numerical problems 

P21.2 For discrete rather than continuous variables the equation analogous to the equation for obtaining C 

(Example 21.1) is (vx) = L; v;_, (N;/N) = (ljN) L; N;v;_, with (N;/N) the analogue ofj(v) 

N = 40 + 62 + 53 + 12 + 2 + 38 + 59 + 60 + 2 = 328 

I 
(a) (v,) = 

328 
{40 X 80 + 62 X 85 + · · · + 2 X 100 + 38 X ( -80) 

+59 X (-85) + · · · + 2 X (-100)} kmh- 1 

=12.8kmh- 1 least 

I 
(b) (lv,l) = 

328 
{40 X 80 + 62 X 85 + · · + 2 X !00 + 38 X 80 

+59x85+--·+2x !OO}kmh- 1 

=186kmh- 11 

(c) (v',.)= -
1
-{40 X 802 +62 X 852 +--·+2 X 1002}(kmh-1)2 =7430(kmh- 1)2 

. 328 

j{;ii = 186 km h- 1 I [that j{;ii = Ovxll in this case is coincidental.] 

P21.4 K = tAcCv.m [A][21.23) 

(
8kT) 

1
/
2 

c = - [21.7] e< T 1/ 2 

rrm 

Hence, K ex T 112cv.m, so ~ = - x ~ ' (T') 1
/
2 (C' ) 

K T Cv.m 

At300K,Cv,m"" ~R+R= ~R At 10 K, Cv,m :::::: ~R [rotation not excited] 

' (300)
1
1
2 

(5) Therefore, ~ = lO x 3" = [2] 
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P21.6 Radioactive decay follows first-order kinetics (Chapter 22); hence the two contributions to the rate of 
change of the number of helium atoms are 

dN . . dN 
- = k,[Bk] (radwact1ve decay) - = -Zw[A] [Problem21.5] 
dt dt 

Therefore, the total rate of change is 

dN p 
- = k,[Bk]- ZwAwithZw = 112 dt (2rrmkT) 

nRT nN AkT NkT 
[Bk] = [Bk]oe-''' and p = - = --=-v v v 

Therefore, the pressure of helium inside the container obeys 

dp kT dN kk,T _,I (pAkT (V) 
dt = Vdr = v[Bk]oe ' - (2rrmkT)I/2 

kk,T[Bk]o (A) ( kT ) 
1
1
2 

If we write a = , b = - x -- , the rate equation becomes 
V V 2nm 

dp =ae-'''-bp, p=Oatt=O 
dt 

which is a first-order linear differential equation with the solution 

Since [Bk] = ~[Bk]o when t = 4.4h, it follows from the radioactive decay law ([Bk] = [Bk]oe-''') 
that (Chapter 22) 

k,= ln2 =4.4xl0-s,-l 
(4.4) x (3600s) 

( 
1.0 x 10-3 g) We also know that [Bk]o = 

1 
x (6.022 x 1023 mol- 1) = 2.5 x 1018 

244gmol 

kk,T[Bk]o (1.381 x 10-23 JK- 1) x (4.4 x 10-5 s- 1) x (298K) x (2.5 x 1018) 
Then, a = V = I.O x 10 6 m3 

= 0.45Pas- 1 

(
rr X (2.0 X I0-6m)2) ( (1.381 x I0-23 JK- 1) x (298K) )'/

2 

and b = x = 3.9 x 
1.0 X 10 6 m3 (2rr) X (4.0) X (1.6605 X 10 2? kg) 

Hence p = ( 0.45Pas-l ) X (e-3.9x!o-3(r/s)- e-4.4x10-s(r/s)) 
' ((4.4 X 10 5)- (3.9 X 10 3)]5 I 
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(a) 

(b) 

I= I h, 

I= !Oh, 

I 

p=(l20Pa) x (e-0·16 -e- 14 )=1IOOPal 

p = (120Pa) x (e- 16 - e 140) =I24Pa I 

K <X R [21.27, and the discussion above 21.27] 

Because both solutions are aqueous their conductivities include a contribution of 76 mS m- 1 from the 
warer. Therefore, 

K(acid soln) 

K(KCI soln) 

K(acid) + K(water) 

K(KCI) + K(water) 

R(KCI soln) 33.21 Q 

""R,;-(a_c_:_id;-s-o-;-ln--;-) = 300.0 Q 

(
33.21) Hence, K(acid) = [K(KCI) + K(water)] x 
3
00.0 - K(water) =53 mS m- 1 

K 53msm- 1 I I Am=-= = 5.3 X w-4 mSm2 mol-l 
c 1.00 x 1 as mol m 3 

K K 
c = - [21.28] ~ - [c small, conductivity of water allowed for in the data] 

Am A~l 

1.887 X J0-6 Sem-I 
c"' [Exercise 21.25(a)] 

138.3 S cm2 mol 1 

"' 1.36 X w-s mol cm-3 =solubility= 11.36 X lo-s M I 
u (H+) 3.623 ~ 

1 H+ = 21.49b = =~ 
( ) u(W)+u(CI) [ ] 3.623+0.791 

When a third ion is present we use 

(H+) I (W) [21.47] 1 
= I (W) +I (Na+) + I(CI ) 

For each/, I= zuvc FAE =constant x cu. Hence, when NaCI is added 

+ c (H+) u (H+) 

I(H) = c(H+)u(H+)+c(Na+)u(Na+)+c(Cl )u(CI) 

(1.0 X JO 

( 1.0 x w-3
) x (3.623) = 

1 0
.
00281 

3) X (3.623) + (J.Q) X (0.519) + (1.001) X (0.791) 

(
zcAF) ( x ) 1+ = -I- x !'.I [Problem 21.13] 

The density of the solution is 0.682 gem-\ the concentration c is related to the molality m by 

which holds for dilute solutions such as these. 

A = rr r2 = rr X ( 2.073 X J0-3 m) 
2 

= 1.350 X 10-S m2 
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czAF ( 1.350 x 10-5 m2) x (9.6485 x 104 C mol-l) ( , _ 1) -- = XC= 0.J042m-moJ XC 
IM (5.000 x J0-3 A) X (2500s) 

= ( 0.1042 m2 mot- 1
) x p x m = ( 0.1042 rn 2 rnol- 1

) x ( 682 kg m-3
) x m 

= (7i.06kgm- 1 mol-') x m = (o.07J06kgmm- 1 mol-') x m 

and so 1+ = ( 0.07106 kg mm- 1moi- 1) x x x m 

In the first solution'+ = ( 0.07106 kg mm- 1 mol-') x (286.9 mm) x (0.01365 mol kg- 1
) =I 0.2781 

In the second solution'+ = ( 0.07106 kg mm- 1 mol-l) x (92.03 mm) x (0.04255 mol kg- 1) =I 0.2781 

Therefore, t(H+) = 0.28, a value much less than in pure water where t(H+) = 0.63. Hence, the mobility 

is much less relative to its counter ion, NH2. 

uRT ze 
D =- [21.63] and "= -- [21.43] 

zF 6rrryu 

(8.314JK- 1 mol- 1) x (298.15K) xu , 
D = I = 2.569 X JO-- V X II 

9.6485 x 104 C mol 

1.602 X J0-! 9 C 
a=-------.,-----,-.,--

(6rr) X (0.891 X J0-3kgm I s-1) XU 

9.54 x 10- 18 C kg- 1 ms 9.54 x \0-IS y- 1 m3 s- 1 , , 
= (I J = I C V. I J = I kg m- s--) 

II II 

9.54 x w-' 4 

and so ajm = 
2 1 1 ujcm s V 

9.54 X J0-2 

and therefore ajpm = 'J 1 1 ufcm- s V 

We can now draw up the following table using data from Table 21.6 

u+ Na+ K+ Rb+ 

104uf(cm2 s- 1 v- 1) 4.01 5.19 7.62 7.92 

105D/cm2 1.03 1.33 1.96 2.04 

afpm 238 184 125 120 

The ionic radii themselves (i.e. their crystallographic radii) are 

Na+ 

59 102 138 149 



P21.18 

P21.20 

404 INSTRUCTOR'S SOLUTIONS MANUAL 

and it would seem that K+ and Rb+ have effective hydrodynamic radii that are smaller than their ionic 

radii. The effective hydrodynamic and ionic volumes of Li+ and Na+ are (4rr /3)rra3 and (4rr /3)rr r! 
respectively, and so the volumes occupied by hydrating water molecules are 

(a) Li+ Cl. V = (4rr /3) x (2123 - 593) x 10-36 m 3 = 5.56 x 10-29 m3 

(b) Na+ Cl. V = (4rr /3) x (1643 - 1023) x 10-36 m' = 2.16 x 10-29 m' 

The volume occupied by a single H20 molecule is approximately (4rr /3) x (!50 pm)3 = 1.4x 10-29 m3 

Therefore, Li+ has about [four [ firmly attached H20 molecules whereas Na+ has only I one to two I 
(according to this analysis). 

This is essentially one-dimensional diffusion and therefore eqn 21.72 applies. 

noe-x2J4Dt 
c = 1/2 [21.72] 

A(rrDI) 

and we know that no = (--
1 
O--"g-71 ) = 0.0292 mol 

342gmol 

A= rrR2 = 19.6cm2 , D = 5.21 x 10-6 cm2 s- 1 [Table21.8] 

A(rrD1) 1/ 2 = (19.6cm2) x [(rr) X (5.21 X I0-6cm2 s- 1) X (1)] 112 

= 7.93 x I0-2 cm3 x (1/s) 1
/
2 

25cm2 

4DI = 7( 4:-:)-x---,.(5-=-.::-2:-1 -x-!:-:0:--;;6-c-m'2-s---.cl )-x-1 = 
1.20 X 106 

(1/s) 

( 
0.0292 mol X I 0

22 
) -I 20x JO' /(/ /<) Therefore, c = x e · · 

(7.93 x 10 2 em') x (1/s)l/2 

(

e-l.20x 10
6 /(1/s)) 

= (369M) x Ill 
(tjs) 

(a) 

(b) 

COMMENT. This problem illustrates the extreme slowness of diffusion through typical macroscopic distances; 

however, it is rapid enough through distances comparable to the dimensions of a cell. Compare to Problem 

21.40. 

Kohlrausch's law states that the molar conductance of a strong electrolyte varies with the square root of 

concentration 
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Therefore a pilot of Am versus c 112 should be a straight line withy-intercept A~,. The data and plot 
(Figure 21.1) are shown below 

Nal 

c/(m mol dm-3) cl/'1 

32.02 5.659 

20.28 4.503 
12.06 3.473 

8.64 2.94 

2.85 1.69 

1.24 1.11 

0.83 0.91 

55 
' 0 
E 

"E; 50 
u 

"' :0::: 
J 45 

y ~ 58.863- 3.9903x: 
R2 = 0.993 . 

A,/(S em2mol- 1) 

50.26 
51.99 

54.01 

55.75 
57.99 

58.44 
58.67 

c/(mmol dm-3) 

17.68 
10.88 
7.19 

2.67 

1.28 
0.83 

0.19 

• Nal 

OKI 

KI 

cl/2 

4.205 

3.298 
2.68 

1.63 

1.13 
0.91 

0.44 

40 '---'---'---'---'---'--'----"'.._:_~_j 
0 2 3 4 5 6 

Figure 21.1 

Thus A:;,(Nal) = 160.7 S em2 mol- 1 I and A:;, (Kl) = 158.9 S em2 mol- 1 I 

Am/(Sem2 mol- 1) 

42.45 
45.91 

47.53 

51.81 
54.09 

55.78 

57.42 

Since these two electrolytes have a common anion, the difference in conductances is due to the cations 

The analogous quantities in water are 

A:,(Nal) = A(Na+) +A(I- 1) = (73.50+76.8)Sem2 mol- 1 =I 126.9Sem2 mol- 1 1 

A:, (Kl) = A(K+) + A(l- 1
) = (73.50 + 76.8) S em2mol- 1 = 1150.3 S em2 mol- 1 I 

A '(Na+) -A '(K+) = (50.10- 73.50) S em2mol- 1 = 1-23.4 S em2 mol- 1 I 

The ions are considerably more mobile in water than in this solvent. Also, the differences between Na+ 

and K+are minimized and even inverted compared to water. 
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The diffusion constant of an ion in solution is related to the mobility of the ion and w its radius in 

separate relations 

uRT kT 
D=-=--

zF 6rrrya 

zFk z:e 
so a=---=--

6rrr}uR 6JT1Jil 

--,::-:::::----:-:::-;-('--1'--) _x_,(,--1._60-;-2;-x----;1 o,---.,-'_
9 

C--:)'::---co--=---,------;-;- - I 0 " = -:- = 8.3 x I 0 m = 18.30 pm I 
6rr(0.93xl0 'kgm 's ')x(!.lxiO 8m2V 's ') 

Solutions to theoretical problems 

We proceed as in Section 21.l(a) except that, instead of taking a product of three one-dimensional 

distributions in order to get the three-dimensional distribution, we make a product of two one-dimensional 

distributions. 

, _ ,2 2 _ ( 111 ) -lm·2 j2kT [(v_r,l\-)dvxdl\' -[(1 )f(v.)dvxdl'v- -- e dvxdv\' 
· · x ·1 · 2rrkT · 

where v2 = v_~ + v_~- The probability f(v)dv that the molecules have a two-dimensional speed. 1', in the 

range v. v + dv is sum of the probabilities that it is in any of the area elemenls dvxdvy in the circular 

shell of raidus v. The sum of the area elements is the area of the circular shell of radius v and thickness 

dv which is rr(v + di') 2 - rrv2 = 2rrvdv. Therefore 

J(v) = 2rr (-"'-) ve-1111 1- T - = -·' '' [M '"] 2rrkT R k 

The mean speed is determined as C = f0
00 

lf(v) dv = J0
00 mj(kT)v2e- 1111

'
2

/ 2kT dv. 

Using standard integrals this evaluates to I C = (rr kT J2m) 112 = (rr RT J2M) 112 1. 

COMMENT. The two-dimensional gas serves as a model of the motion of molecules of surfaces. See 

Chapter 24. 

Rewriting eqn 21.4 with (M jR) = (m/k) 

( 
111 )3/2 .., ,2 .., . 

f(v) = 4rr -- v-e-1111 1-I.:.T 
2rrkT 

The proportion of molecules with speeds less than cis 

p = f(v) dv = 4rr -- v2e-nn•-J2kT dv L, ( Ill )~'L' . 
o 2rrkT o 
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Ill 
Defining a = 

2
kT 

P = 4rr - v-e-m dv = -4rr - - e-m dv (a )'I'[,'. , ·' (a )'I' d [," ·' 
rr o rr dao 

Defining x2 = av2 , dv =a- 112ctx 

P - -4rr - - - e dx ( a )'!2 d { I [,""
112 

-x' ] 
- rr da al/2 o 
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- -4rr - -- - e d\ + - -- (a )'I' { I (I )312 [,''"'!' -x' . (I) 112 d_ [,""'12 
rr 2 a o a da o 

('(11/2 

Then we use Ia e-x
2 

d.x = ( rr 112/2) erf(ca 112) 

_:J_[, Ctll/2 (d II') I 
e cU = -- x (e ) = - - e -x' . ca - -c·'a ( c ) _,.2, 

da o da 2 a 112 

d [,-where we have used - j(y)dy = j(z) 
dz o 

Substituting and cancelling we obtain P = erf(ca l/2) - (2ca 112 jn 111) e -c
2
a 

Now, c = (3kT/m) 11', so ca 112 = (3kT/m) 112 x (m/2kT) 1i2 = (3/2) 112, and 

( (3) (6)1/2 P=erf Yl.-; e-312 =0.92-0.31=~ 

Therefore (b) j61 percent I of the molecules have a speed less than the root mean square speed and 

(a) j39 percent I have a speed greater than the root mean square speed. (c) For the proportions in terms 

of the mean speed Z., replace c by C = (SkT jrrm) 112 = (8/3rr) 1/ 2 c, so Ca 111 = 2/rr 1/2. 

Then P = erf(ca 112)- (2ca112jrr 112) x (e-'
2") = erf(2/rr 112)- (4/Tr)e-<lrr = 0.889-0.356 = 

I o.533l 
That is, js3 percent! of the molecules have a speed less than the mean, and 147 percent I have a speed 
greater than the mean. 

An effusion oven has constant volume, fixed temperature, and effusion hole of area A. Gas escapes 
through the hole. which makes the effusion rate negative. 

dN pANA 
-- = ZwA = [21.16] 

d1 (2rrMRT) 1i2 

For a perfect gas, pV = nRT = NRT /NA and, therefore, N = NApV /RT. 
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D 'f' . . . dN NA V dp S b . . . h fi . . ld 1 JerentmtJon g1ves - = ---. u sututlon mto t e rst equat1on y1e s: 
dt RT dt 

RT dt (2rr M RT) 1/ 2 

dp =-( RT ) 112 ~p=-f!. (
2rrM)

1
i
2 

V 
where the time constant is T = -- -

dt 2rrM V r RT A 

dp dt 

p T 

[Pdp=-!._ f'dt 
},0 P T Jo 

In (.E._)=-'- or p =poe-'!' 
PO T 

When t = lJf2· p = (1j2)po. Substitution into the above equation gives 

In (!!!!...) = -0£ 
2po r (

2rrM) 
1
1

2 
V 

or 11;2 = T ln(2) = fiT A ln(2) 

The final equation indicates that the half-life for effusive loss is independent of PO· Furthermore,the 
half-life increases with both the V fA and M 112 factors. It decreases with the factor T- 1 12. 

ac a2c 
- = D- [21.68] 

. noe-:r:2f4Dr 
with c = 112 [21.72] at ax2 A(rr Dt) 

ac ( I ) ( a ) _,,, 1, ( a ) ( bx2
) -bx' 1, c bx2 

then - =- - x - e · + - x - e = -- + -c 
ar 2 r3f2 r'12 tz 2r r2 

ac = (....':.._) x (-2bx) e-bx'f• 
ax t 112 f 

a'c _ (2b) ( a ) -bx'f• ( a ) (2bx)
2 

_,_,,1, _ (2b) (2bx)
2 

--- - x - e +- x - e -- - c+ - c 
Bx2 t t 112 t 112 I I t 

=-(-1 )c+(bx')c 
2Dt Dt2 

I ac 
= --as required 

D a, 

Initially the material is concentrated at x = 0. Note that c = 0 for x > 0 when t = 0 on account of the 

very strong exponential factor ( e-bx
2
/r ---+ 0 more strongly that lj1 1/2 --)- oo) 

When x = 0, e-x
2
f 4Dr = I. We confirm the correct behavior by noting that (x) = 0 and {x2) = 0 at 

1 = 0[21.82]. and so all the material must be atx = 0 at 1 = 0. 
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Draw up the following table based on the third and last equations of Justification 21.11 

N 4 6 8 10 20 30 40 60 100 

p (6A)E,ct 

p (6Ahppm,. 

0 0.016 0.0313 0.0439 0.0739 0.0806 0.0807 0.0763 0.0666 
0.004 0.162 0.0297 0.0417 0.0725 0.0799 0.0804 0.0763 0.0666 

The points are plotted in Figure 21.2. 

0.10 
..... L. ... ~ 

p 

,. 

0.05 ....... ·····: ... -~ 

...... ;:. . .... : ..... -~ ..... :. . " "~ ..... :· .... ·: ..... :· 

!·· 
~ . . . . ! ...... : ....... i.. .. .. : ....... i- .... ·'· ...... { .. 

0 
0 20 40 60 80 100 

" Figure 21.2 

The discrepancy is less than 0.1 percent when I N > 60 I 

AB;::::::: A++ s-; YAB:::::::::: 1, because AB interacts weakly with ions. 

K = y' [ (ac)(ac) J = y' ( a
2
c ) or 

± (1-a)c ± 1-a 

K (A++ L)q00 (A++ L)ac 
Am=-= = =(A++ L)a 

c c c 

Let A~ =A+ +A- be the molar conductivity when the solution is infinitely dilute and a = I (eqn 21.30). 
Then, a= Am/0.-+ +).._)=Am/ A~. Substitution into equilibrium expression gives: 
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Division by Am gives: 

Solutions to application 

The diffusion coefficient for a perfect gas is 

D= *AC where A= (2 112aN)- 1 whereNisnumberdensity. 

The mean speed is 

_ (8kT)'i2 (8(1.381xi0-23 JK- 1)x(I04 K))
1
/
2 

4 _1 c= ~ = =1.46xl0ms 
rrm rr(lu)x(l.66xl0 27 kgu 1) 

c 
SoD= N 11, 3a 2 -

1.46xiO'ms-l -1 6 0'6 2 -II 
""3""( 0:-. 2:-l:-x--:I-::0---..18'm--,2 )-x----:(-:-1 -x-("'1-;:0--,2 -m_,.)--,3 )-::2'' 1"'2 - I. x 1 m s · 

The thermal conductivity is 

cCv.m (1.46 X 104 ms- 1) X (20.784- 8.3145)JK-l mol-l 
K = = .:_ ____ -c-::-'--::--'-------;::;-'---,----,--,:,-

3aNA21/2 3(0.21 x IQ-18 m2 ) X (6.022 X 1023 mol 1)21/2 

k =I 0.34J K- 1 m- 1 s- 1 I 

COMMENT. The validity of these calculations is in doubt because the kinetic theory of gases assumes 

the Maxwell-Boltzmann distribution, essentially an equilibrium distribution. In such a dilute medium, the 

timescales on which particles exchange energy by collision make an assumption of equilibrium unwarranted. 

It is especially dubious considering that atoms are more likely to interact with photons from stellar radiation 

than with other atoms. 

. 1 . 1 "H .::(m=as"s-'p:Ce;';rc;-;e:.:.n:.:.ta'?g'-'e-'-)_x_,_(d,.ce:.:.n:.:.s':.:.·ty'-'-) Concentration of H nucle1, [ H] = - = -
V lOO(molar mass) 

0.36(158 g cm-3) 

l.Ogmol 1 

= 57molcm-3 

. 4 . 4 llHc .c(m=as"s-'p:Ce
00
rcc;e:.:.n:.:.ta'?g'-'e-'-) _x_(:cd,..e_n.:_si_,tyc:) Concentration He nucle1, [ He] = - = -

V lOO(molar mass) 

0.64(158gcm-3) 
= 

4.0gmol 1 

= 25 mol cm-3 

Concentration of e- = [1 H] + 2[4He] = (57+ 2 x 25) mol cm-3 = 107 mol cm-3 
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Total concentration of gaseous particles= (57+ 25 + 107) mol crn-3 = 189 mol cm-3 

,-Hnueleus = (1.4 x 10-IJem)(l)l/3 = 1.4 x 10-"em 

rHenucJeus =(1.4 X JO-I]cm)(4) 1/) =2.2 X 10-l]CITI 

(a) The excluded volume of a nuclear collisional pair is estimated to be equal to the volume of the 

dashed sphere in Figure 21.3. The excluded volume of a single nucleus is 1/2 of this . 

... ··· 

Nucleus 

' ' 

·· .. 
_ .. -··· 

·-... Figure 21.3 

In this problem we have a mixture of hydrogen and helium nuclei so let us take r to equal the 
weighted average of hydrogen and helium radii. This is, of course, a very simple estimate. Then 

r"' 0.36( 1.4 x 10- 13 em)+ 0.64(2.2 x 10- 13 em) 

r ~ 1.9 X 10-l) Cffi 

b'e ~(6.022 x 1023 mol- 1) x (1.9 x 10- 13 em)3 

I b:::::::: 7.1 X w- 14 cm3 mol- 1 I 
b(per em3) "' 82 mol x 7.1 x 10- 14 em3 mol-l 

"'5.8 x 10- 12 em3 

This b is extraordinarily small compared to l cm3, so we may treat the nuclei as points within any 

macroscopic volume. In the sense that the nuclei act as volumeless points, the perfect gas law would 

seem to be applicable. However, our analysis has not included details of the internuclear forces and 

these may be appreciably larger than the hard-sphere model estimate. 

(b) Tpcrfcct = pV, where n = total number of moles of gaseous particles including the number 
nR 

of moles of electrons 

p 

({i)R 

(2.5 x 10 11 atm) x (I dm3fl03 em3) I I 
= --,-,,--='--~3'--="--:....0.:...:::._:,,c...:._.:.,:.:.:;._:._.,l,) = 1.6 X I07K = T"'''"' 

( 189 mol em · ) x (0.0821 dm alm K 1 mol . . 
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{c) TvandcrWaals = VmR- b (p + :~) 
p(Vm- b) . 

= assummg a ;:::;:: 0 
R 

= 1!. (~-b)= 1!. ((-1 ) -b) 
R n R ¥ 

( 
2.5 x 10 11 atm ) 

- 0.0821 dm 3 atm K 1 mol 1 

x ( 
1 

- 7.1 x w-'4 cm3 mol-') 
189molcm 3 

(7.1 X IQ- 14 cm3 moJ- 1) X (2.5 X 10 11 atm) 
= Tperfcct - 3 1 

(0.0821 dm atm K -I mol ) 

where the last term is negligible. Therefore 

TvanderWaals = Tperfcct 

P21.40 The mean square displacement is (from Exercise 21.28(b)) 

( ) 
(r2) (1.0 x w-6 m) 2 

r 2 = 6Dt so t = - = II 2 I = lt.7 X w-2 s I 
6D 6(1.0 X 10 m s ) 
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22 The rates of chemical 
reactions 

022.2 

022.4 

022.6 

022.8 

Answers to discussion questions 

No solution. 

The overall reaction order is the sum of the powers of the concentrations of all of the substances 
appearing in the experimemal rate law for the reaction (eqn 22. 7); hence, it is the sum of the individual 
orders (exponents) associated with a given reactant (or product). Reaction order is an experimentally 
determined, not theoretical, quantity, although theory may attempt to predict it. Molecularity is the 
number of reactant molecules participating in an elementary reaction. This concept has meaning only 
for an elementary reaction, but reaction order applies to any reaction. In general, reaction order bears 
no necessary relation to the stoichiometry of the reaction, with the exception of elementary reactions, 
where the order of the reaction corresponds to the number of molecules participating in the reaction; 
that is, to its molecularity. Thus for an elementary reaction, overall order and molecularity are the same 
and are determined by the stoichiometry. 

The steady-state approximation is the assumption that the rate of change of the concentrations of inter
mediates in consecutive chemical reactions is negligibly small. It is a good approximation when at 
least one of the reaction steps involving the intermediate is very fast, that is, has a large rate constant 
relative to other steps. See Section 22.7(b). A pre-equilibrium approximation is similar in that it is 
a good approximation when the rate of formation of the intermediate from the reactants and the rate 
of its reversible decay back to the reactions are both very fast in comparison to the rate of formation 
of the product from the intermediate. This results in the intermediate being in approximate equilib
rium with the reactants over relatively long time periods (though short compared to the overall time 
scale of the reaction). Hence the concentration of the intermediate remains approximately constant 
over the time period that the equilibrium can be considered to be maintained. This allows one to relate 
the rate constants and concentrations to each other through a constant (the pre-equilibrium constant). 
See Section 22.7(e). 

The parameter A, which corresponds to the intercept of the line at 1 jT = 0 (at infinite temperature). is 
called the pre-exponential factor or the frequency factor. The parameter Ea. which is obtained from the 
slope of the line ( -Ea/ R), is called the activation energy. Collectively, the two quantities are called the 
Arrhenius parameters. 

The temperature dependence of some reactions is not Arrhenius-like, in the sense that a straight line 
is not obtained when Ink is plotted against 1/T. However, it is still possible to define an activation 



022.10 

E22.1(b) 

E22.2(b) 

414 INSTRUCTOR"S SOLUTIONS MANUAL 

energy as 

, (dink) E"=RT- dT [22.30] 

This definition reduces to the earlier one (as the slope of a straight line) for a temperature-independent 

activation energy. However, this latter definition is more general, because it allows Ea to be obtained 
from the slope (at the temperature of interest) of a plot of Ink against I jT even if the Arrhenius plot is 

not a straight line. Non-Arrhenius behavior is sometimes a sign that quantum mechanical tunnelling is 

playing a significant role in the reaction. 

The expression k = kakb[A]/(kb + k~[A]) for the effective rate constant of a unimolecular reaction 
k 

A ----,)- Pis based on the validity of the assumption of the existence of the pre-equilibrium A+A _.:A* +A. 
k:, 

This can be a good assumption if both ka and k;1 are much larger than kb. The expression for the effective 
rate-constant, k, can be rearranged to 

I k~ I -=-+-
k k,kb k,[A] 

Hence, a test of the theory is to plot Ijk against 1/[A], and to expect a straight line. Another test is based 

on the prediction from the Lindemann-Hinshelwood mechanism that as the concentration (and therefore 
Lhe partial pressure) of A is reduced, the reaction should switch to overall second order kinetics. Whereas 

the mechanism agrees in general with the switch in order of unimolecular reaclions, it does not agree in 

detail. A typical graph of I jk against II[ A] has a pronounced curvature, corresponding to a larger value 
of k (a smaller value of Ijk) at high pressures (low 1/[A]) than would be expected by extrapolation of 

the reasonably linear low pressure (high II[ A]) data. 

Solutions to exercises 

d[A] I d[B] d[C] I d[D] _1 _ 1 v = --- = ---- = -- = --- = l.OOmoldm · s , so 
dt 3 dt dt 2 dl 

Rate of consumption of A = lt.O mol dm-3 s- 1 I 

Rale of consumption of B = 13.0 mol dm-3 s- 1 I 

Rate of formation of C = 11.0 mol dm-3 s- 1 I 

Rate of formation of D = lz.o mol dm-3 s- 1 I 

Rate of consumption of B = - d[B] = l1.00 mol dm-J ,-I I 
dt 

Rate of reaction = - ~ d[B] =I 0.33 mol dm-3 s-1 I= d[C] = ~ d[D] = _ d[A] 
3 dt . dt 2 dt dt 

Rate of formation of C =I 0.33 mol dm-3 ,-I I 
Rate of formation of D =I 0.66 mol dm-3 s- 1 I 
Rme of consumption of A =I 0.33 mol dm-3 s- 1 I 
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E22.3(b) The dimensions of k arc 

dim ofv 

(dim of [A)) x (dim of [B))' 

amount x length-3 x time- 1 

(amount x length 3 )3 

= length6 x amount-2 x time- 1 

In mol, dm, s units, the units of k are I dm6 mol-2 s- 1 I 
d[A] , d[A] 

(a) "= -- = k[A][B]- so -- = -k[A][BJ' 
dt dt 

d[C] d[C] , 
(b) v = -so - = -k[A][B]-

dt ~d~'----~ 

E22.4(b) The dimensions of k are 

dim ofv 

dim of [A] x dim of [B] x (dim of [C)) 1 

amount x length-3 x time- 1 

-----''---~- = time- 1 

amount x length 3 

The units of k are~ 

" = d~~l =I k[A][B][C]-1 I 
E22.5(b) The rate law is 

v = k[A]" oc p" = {po(l -f)}" 

where a is the reaction order, and/ the fraction reacted (so that I - f is the fraction remaining). Thus 

VJ {po(l- /1ll" = (I- /1 )" 
{po(l-hll" I-h 

and a = ln(v 1jv,) = ln(9.71(7.67) =l 2.ool 
(

1-/J) (1-0.100) In-- In 
I -h I -0.200 

E22.6{b) The halt·~life changes with concentration. so we know the reaction order is not I. That the half-life 
increases with decreasing concentration indicates a reaction order <I. Inspection of the data shows the 

half-life roughly proportional to concentration, which would indicate a reaction order ofO according to 

Table 22.3. More quantitatively, if the reaction order is 0, then 

llf2 ex p and 

(\) 
11!2 PI 

1(2J = P' 
1/2 -

We check to sec if this relationship holds 
{I) 

t 11' = 340s = 1.91 
1(2) 178s 

1/2 

so the reaction order is@]. 

E22.7(b) The rale law is 

I d[Aj 
v = ---- = k[Al 

2 dt 

and 
PI 

"' 
55.5 kPa 
===- = 1.92 
28.9 kPa 
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The half-life formula in eqn 22.13 is based on the assumption that 

- d[A] = k[A]. 
dt 

That is, it would be accurate to take the half-life from the table and say 

ln2 
l]j'l =---,;;-

where k' = 2k. Thus 

IJ(>- ln2 1 =11.80xl06sl 
- - 2(2.78 X JQ 7 S ) · · 

Likewise, we modify the integrated rate law (eqn 22.12b), noting that pressure is proponional to 

concentration: 

p = poe-2k1 

(a) Therefore. after 10 h, we have 

p = (32.1 kPa) exp[-2 x (2.78 x 10-7 s- 1) x (3.6 x 104 s)] = 131.5 kPa I 

(b) After 50 h, 

p = (32.1 kPa) exp[ -2 x (2.78 x 10-7 ,-I) x (1.8 x 105 s)] = 129.0 kPa I 

E22.8(b) From Table 22.3, we see that for A + 2B --> P the integrated rate law is 

kt = In 
I [ [A]o([B]o - 2[P]) J 

[B]o - 2[A]o ([A]o - [P])[B]o 

(a) Substituting the data after solving fork 

k = --:--:--:-:::;----::-::-::-::---'::-' ----c:-:-::c:c----c-----c--:---,- X I 0 [ ( 0. 07 5 X ( 0. 080 - 0. 060) J 
(3.6 X JQl S) X (0.080- 2 X 0.075) X (mol dm 3 ) (0.075- 0.030) X 0.080 

= 13.47 x I0-3dm3mol- 1s- 1 I 

(b) The half-life in terms of A is the time when [A] = [A]o/2 = [P], so 

I [ [A]o ([B]o - (2[A]o/2)) J 
11 ;2 (A) = k([B]o- 2[A]o) In ([A]o[B]o/2) 

which reduces to 

1 A - In 2---I ( 2[A]0 ) 
112( ) - k([B]o- 2[A]o) [B]o 

-~---=--,---,..----,-----------,- x In (2- _0._15_0) 
(3.47 x 10-J dm3 mol 1 s-1) x ( -0.070 mol dm 3) 0.080 

= 8561, = 12.4 h I 
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The half-life in terms of B is the time when [B)= [B)o/2 and [P) = [B)o/4: 

[ 
( [B)o)l I [A]o [B]o - -

2
-

11;2(8) = In 
k([B]o- 2[A]o) ([A]o _ [;o) [B]o 

which reduces to 

I ( [A]o/2 ) 
11;2(8) = In 

k([B]o- 2[A]o) [A]o - [B]o/4 

(3.47 x I0-3 dm3 mol 

= 1576 s = I o.44 h I 

1 s- 1) x (-0.070moldm 

E22.9(b) (a) The dimensions of a second-order constant are 

( 
0.075/2 ) 

3) X In 0.075- (0.080/4) 

dimofv 

(dim of [A])2 

amount x length-3 x time- 1 

(amount x length 3) 2 
= length3 x amount- I x time- I 

In molecule, m, s units, the units of k are I m3 molecule- 1 s- 1 I 

The dimensions of a third-order rate constant are 

dim of v amount x length-3 x time- 1 
6 _2 . _ 1 

(dl·m of [A])3 = 3 3 =length x amount x time 
(amount x length ) 

In molecule, m, s units, the units of k are I m6 molecule-2 s- 1 I 
COMMENT. Technically, "molecule" is not a unit, so a number of molecules is simply a number of individual 

objects, that is, a pure number. In the chemical kinetics literature, it is common to see rate constants given 

in molecular units reported in units of m3 s-1 , m6 s-1 , cm3 s-1 , etc. 

(b) The dimensions of a second-order rate constant in pressure units are 

dim of v 

(dim of p)2 

pressure x time-' _, . _ 1 '---.,.------:c2,--- = pressure x t1me 
(pressure) 

In SI units, the pressure unit is N m-2 = Pa, so the units of k are I Pa-l s- 1 I 

The dimensions of a third-order rate constant in pressure units are 

dimofv 

(dim of p)3 

pressure x time- 1 -2 . -I 

1 = pressure x time 
(pressure)· 

In SI pressure units, the units of k are I Pa-2 s- 1 I. 

E22.1 O(b) The integrated rate law is 

kl = I In [A]o([B]o - 2[C]) [Table 22.3] 
[B]o - 2[A]o ([A]0 - [C])[B]0 
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Solving for [C] yields, after some rearranging 

[C] = "'[Ao"]"-'o['--B"']o-:-,{e_xp':C[ockl.o:([_B-"']o-:--:-:2--'[-:-A"']o'-::)]"'"'-'""'1-') 
[B]o exp[ki([B]o- 2[A]o)]- 2[A]o 

[C] (0.025) X (0.150) X (e0·21 x(O.IOOix<l'- I) (3.75 X w-3) X (e0·021 " 1'- I) 
so 3 

mol drn (0.150) X e0.21 x(O.IOOI x< I' - 2 X (0.025) (0.150) X e0.021 x< I' - (0.050) 

(a) 
(3.75 x w-3) x (e0·21 - I) I I 

[C] = 021 mol dm-3 = 6.5 X w-3 mol dm-3 

(0.150) x e · - (0.050) · 

(b) 
(3.75 x w-3) x (e 12·6 - I) I I 

[C] = I' 
6 

mol dm-3 = 0.025 mol dm-3 

(0.150) x e -- - (0.050) 

E22.11(b) The rate law is 

I d[A] 3 v=---=k(A] 
2 dl 

which integrates to 

I ( I I ) 
2kl = 2 [A]2 - [AJ6 

I ( I I ) 
so I = 4k [A]2 - [AJ6 , 

I= c(3.50 X 10 

=11.5xl06sj 

I ) ( I I 
4dm6 mol 2 s 1) x (0.021 moldm 3)2 - (0.077moldm 

E22.12(b) A reaction nth-order in A has the following rate law 

- d[A] = k[A]" 
dl 

Integration yields 

so d[A] = -k d1 = [Ar" d[A] 
[A]" 

Let IJfJ be the time at which [A]= [A]o/3, 

(~[A]o)'-''- [Alb-" [AJb-"[(~) 1 -"- I] 
SO -kltj3 = l _II J _II 

and ltJJ = 

E22.13(b) The equilibrium constant of the reaction is the ratio of rate constants of the forward and reverse reactions: 

kr 
K =- so kr = Kk,. 

k, 

The relaxation time for the temperature jump is (Example 22.4): 
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Setting these two expressions for kr equal yields 

Kk, =,-I - k,([B] + [C]) 
I 

so k, = -, cc(Kc-+-c[c=Bc-] -+-c[-=C-c-]) 

Hence 

I 
k, = --------~----------~--~--~~--~--~~-------, 

(3.0 x 10-6 s) x (2.0 x I o- 16 + 2.0 x 10-4 + 2.0 x 10-4) mol dm 3 

=18.3 x I08 dm3 mol- 1 s- 1 1 

andkr = (2.0 x I0- 16 moldm-3) x (8.3 x 108 ctm3 mol- 1 s- 1) =11.7 x I0-7s-'l 

E22.14(b) The rate constant is given by 

(-£,) 
k =A exp RT [22.31] 

so at 24 °C it is 

1.70 X w-2 dm3 mol-l s- 1 =Aexp ( -£, ) 
(8.3145JK- 1 mol 1) x [(24+273)K] 

and at 37 °C it is 

2.0 I x 10-2 dm3 mol- 1 s -I = A exp ( -:::-:-:--:::-=---;----,--=-£.-"'----c-c-:-::-----c=-:-::-:-:c) 
(8.3145JK 1 mol 1)x[(37+273)K] 

Dividing the two rate constants yields 

1.70 X 10-2 
[( -£, 

2.01 x 10 2 = exp 8.3145JK 1 mol 

so ( 1.70 X 10-
2

) ( -£, ) ( I I ) 
In 2.01 x 10 2 = 8.3145JK 1 mol 1 x 297K- 310K 

( 
I I )-I ( 1.70 x 10-2) and£,=- ----- In 

7 
x (8.3145JK- 1 mol- 1) 

297K 310K 2.01xl0-

= 9.9 x 103 J mol- 1 = 19.9 kJ mol- 1 I 

With the activation energy in hand, the prefactor can be computed from either rate constant value 

( 
£,) 2 3 1 ( 9.9 x 10

3 
J mol-

1 
) A= kexp - = (1.70 x 10- dm mol- s- 1) x exp 

1 RT (8.3145 J K I mol ) x (297 K) 

=I 0.94 dm3 mol- 1 s- 1 I 

E22.15(b) (a) Assuming that the rate-determining step is the scission of a C-H bond, the ratio of rate constants 
for the tritiated versus protonated reactant should be 

kT -< hkr I I ( 1/2) ( ) - = e , where A = -- x 1/2 - 1/2 
k" 2ks T llcH llco 

[22.53 with ltcv = ruv = /i(k/f.l-) 112
] 
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The reduced masses will be roughly I u and 3 u respectively, for the protons and 3H nuclei are far 

lighter than the rest of the molecule to which they are attached. So 

(1.0546 X 10-34 Js) X (450Nm- 1) 1i 2 
A "" -7----c-o--=c----:-=---,c;-:-:c'--;c-=-::':-:c:-

2 x (1.381 X 10 23JK I) x (298K) 

x (~12 -~1,) x (1.66 x I0-27 kgu- 1)- 1i 2 
(I u) (3u) -

"" 2.8 

so~: ,e-28 =10.06"' 1/161 

(b) The analogous expression for 160 and 180 requires reduced masses for C-160 and C-180 bonds. 
These reduced masses could vary rather widely depending on the size of the whole molecule, but in 
no case will they be terribly different for the two isotopes. Take 12CO, for example: 

(16.0u) x (12.0u) 
1'16= (16.0+12.0)u =6.86u and 

(18.0u) x (12.0u) 
/J-18 = (18.0 + 12.0)u = 7.20u 

(1.0546 X 10-34 Js) x (1750Nm- 1) 1i 2 

A = -'-2o:--x-c(::-l-=.3::-8:-l -x-,I-=o---,c;23c:Jc::K':--o1:-) -x-(::::2"'98:-:K::-:---) 

x ( I 1/2- I 1/2) x (1.66 x 10-27 kgu-1)-1/2 
(6.86 u) (7.20 u) 

= 0.12 

kls OP ~ so -=e- ·-=~ 
kl6 

At the other extreme, the 0 atoms could be attached to heavy fragments such that the effect
ive mass of the relevant vibration approximates the mass of the oxygen isotope. That is, /116 ::::::: 

16u and /J-18"'18u 

SOA"'0.19 so ~ = e-0·19 =I 0.831 
kl6 

I k' I 
- = -' + -k- [analogous to 22.67] 
k kakb aPA 

Therefore, for two different pressures we have 

so k, = (~- 2.) (~- 2.)-l 
p p' k k' 

= (1.09 x

1

I03 Pa- 25

1

Pa) x (1.7 xI~ 3 s 
::-::---:-:;--;;--;-1 ) -I 
2.2 X lQ 4 S 
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Solutions to problems 

Solutions to numerical problems 

P22.2 The procedure is that described in solution to Problem 22.1. Visual inspection of the data seems to 
indicate that the half-life is roughly independent of the concentration. Therefore, we first try to fit the 

data to eqn 22.12b: 

In ( [A] ) = -kt 
[A]o 

As in Example 22.3 we plot In ( [A] ) against time to see if a straight line is obtained. We draw up the 
[A]o 

following table (A = (CH3)3CBr) 

1/h 
[A]/(10-'mol dm-3) 

[A] 

[A]o 

0 

• 

0 

~ 
~ -1.0 

:s 

• 

0 

10.39 

0 

9.62 

• 

3.15 
8.96 

0.862 

-0.148 

11.16 

• 

6.20 
7.76 

0.747 

-0.292 

12.89 

10.00 
6.39 

0.615 

-0.486 

15.65 

• 

-2.0 +-------,----------,,--------, 
0 10 20 30 

1/h 

18.30 30.80 

3.53 2.07 

0.340 0.199 

-1.080 -1.613 

28.3 48.3 

Figure 22.1 

The data are plolted in Figure 22.1. The fit to a straight line is only fair, but the deviations look more like 

experimental scatter than systematic curvature. The correlation coefficient is 0.996. If we try to fit the 

data to eqn 22.15b, which corresponds to a second-order reaction, the fit is not as good; that correlation 

coefficienl is 0.985. Thus we conclude that the reaction is most likely I first-order 1. A non-integer order, 
neither first nor second, is also possible. 
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The rate constant k is the negative of the slope of the first-order plot: 

k = 0.0542h- 1 =11.51 x 10-5s- 1 1 

At 43.8 h 

In ([A])= -(0.0542 h- 1) x (43.8 h)= -2.359 
[A]o 

[A]= (10.39 x 10-2 mol dm-3) x e-2·359 = lr9-.8-2_x_l_0 ___ 3_m_o_l_d_m __ ---.3 I 

P22.4 Examination of the data shows that the half-life remains constant at about 2 minutes. Therefore, the 

reaction is I first-order 1. This can be confirmed by fitting any two pairs of data to the integrated first-order 

rate law, solving fork from each pair, and checking to see that they are the same to within experimental 

error. 

P22.6 

( [A]) 
In [A]o = -kl [22.12b,A = N20 5] 

Solving fork, 

k = _In....::( [c_A..:::]o.:..:/ ['-A"-]) 
I 

At 1 = 1.00 min, [A] = 0.705 mol dm-3 and 

k =In (1.000/0.705) = 0.350min-l = 5.83 x 10-3 s-1 
1.00 mm 

At 1 = 3.00 min, [A]= 0.399 mol dm-3 and 

k =In (1.000/0.349) = 0.351 min-I = 5.85 x 10-3 s-1 
3.00 min 

Values of k may be determined in a similar manner at all other times. The average value of k obtained is 

ls.84 x w-3 s- 1 1- The constancy of k, which varies only between 5.83 and 5.85 x w-3 s- 1 confirms 

that the reaction is I first order I. A linear regression of ln[A] against r yields the same result. The half-life 

is (eqn 22.13) 

In 2 0.693 
11/2 = k = 5.84 x 10 3 s I = 118.7 s = 1!.98 min I 

Since both reactions are first-order, we have 

d[A] - dt = k1 [A]+ k2[A] = (k 1 + k2)[A] 

so [A]= [A]oe-(k,+k,)< [22.12b with k = k1 + k2l 
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We are interested in the yield of ketene, CH2CO; call it K: 

Integrating yields 

{IKI {' 
Jo d[K] = kz[A]o Jo e-lkt+k,)tdr 

[K] = kz[A]o (I_ e-(k,+k'l') = _k_z -([A]o _[A]) 
k1 + k2 k, + kz 

The percent yield is the amount ofK produced compared to complete conversion; since the stoichiometry 

of reaction (2) is one-to-one, we can write: 

%yield= [K] x 100% = _k_z_(l- e-(k,+k'l') x 100%, 
[A]o k1 + kz 

which has its maximum value when the reaction reaches completion 

kz 4.65 s- 1 

max% yield= --- x 100% = =-=c---:--:-::-c---,.1 x 100% = 155.4% I 
k 1 + k2 (3.74 + 4.65) s 

COMMENT. If we are interested in yield of the desired product (ketene) compared to the products of side 

reactions (products of reaction 1), it makes sense to define the conversion ratio, the ratio of desired product 

formed to starting material reacted. namely 

[Kl 
[Alo- [A] 

which works out in this case to be independent of lime 

[K] k2 

[Ala- [A] k, + k2 

If a substance reacts by parallel processes of the same order, then the ratio of the amounts of products will 

be constant and independent of the extent of the reaction, no matter what the order. 

Question. Can you demonstrate the truth of the statement made in the above comment? 

The stoichiometry of the reaction relates product and reaction concentrations as follows: 

[A]= [A]o- 2[B] 

When the reaction goes to completion, [B] = [A]o/2; hence [A]o = 0.624 mol dm-3. We can therefore 

tabulate [A], and examine its half-life. We see that the half-life of A from its initial concentration is 
approximately 1200 s, and that its half-life from the concentration at 1200 sis also 1200 s. This indicates 

a first-order reaction. We confirm this conclusion by plotting the data accordingly (in Figure 22.2), using 
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which follows from 

d[A] 
- = -kA[A] 

dt 

tjs 

[B]j(mol dm-3) 

[A]j(mol dm-3) 

In [A]o 
[A] 

1.4 

1.0 ;;: 
"';; 
;;: 
1? 0.6 

0.2 

0 600 1200 

0 0.089 0.153 
0.624 0.446 0.318 

0 0.34 0.67 

1200 2400 

1800 

0.200 
0.224 

1.02 

t I s Figure 22.2 

2400 

0.230 
0.164 

1.34 

The points lie on a straight line, which confirms I first-order I kinetics. Since the slope of the line is 
5.6 x 10-4 , we conclude that kA = 5.6 x 10-4 s 1. To express the rate law in the form v = k[A] we 
note that 

u = --- =- - x (-kA[A]) = -kA[A] I d[A] (I) I 
2 dt 2 2 

and hence k = tkA = 12.8 x w-• s- 1 I 

If the reaction is first-order the concentrations obey 

In ([A])= -kt [22.12b] 
[A]o 

and, since pressures and concentrations of gases are proportional, the pressures should obey 

In PO =kt 
p 

and ~In Po should be a constant. We test this by drawing up the following table 
I p 

pojTorr 200 200 400 400 600 600 

tjs 100 200 100 200 100 200 

Po/Torr 186 173 373 347 559 520 

104 (__I_) In Po 
tjs p 

7.3 7.3 7.0 7.1 7.1 7.2 
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The values in the last row of the table are virtually constant, and so (in the pressure range spanned by 

the data) the reaction has I first-order kinetics I with k = 17.2 X w-4 s- 1 I 

Using spreadsheet software to evaluate eqn 22.40, one can draw up a plot like that in Figure 22.3. The 

curves in this plot represent the concentration of the intermediate [I] as a function of time. They are 
labeled with the ratio k1/kz, where kz = 1 s- 1 for all curves and kt varies. The thickest curve, labeled 

10, corresponds to kz = 10 s- 1, as specified in part a of the problem. As the ratio kt fkz gets smaller 
(or, as the problem puts it, the ratio kz!k1 gets larger), the concentration profile for I becomes lower, 

broader, and flatter; that is, [I] becomes more nearly constant over a longer period of time. This is the 
nature of the I steady-state approximation 1. which becomes more and more valid as consumption of the 
intermediate becomes fast compared with its formation. 

0.8 

·····? . . . . . . ; ....... ; ....... ·~ ....... ~ ....... ~· ....... ~... . 

0.6 ................ 
: ! : 

-7 ................ 
E 
"0 

0 
0.4 E ....... ~.... .. .~ ....... ~ 

:,:: 
-

0.2 

3 4 5 
Figure 22.3 

(a) First, find an expression for the relaxation time, using Example 22.4 as a model: 

d[A] 2 - = -2k,[A] + Zkb[A2l 
dt 

Rewrite the expression in terms of a difference from equilibrium values, [A] = [A]cq + x: 

d[A] d([A],q + x) dx 2 1 
dt = dt = dt = -2k,([A]0q +x) + 2kb([A2loq- 2x) 

dx 2 2 dt = -2k,[AJ,q- 4k,[A],qx- 2k,x + 2kb[A2]oq- kbx"" -(4k,[A],q + kb)x 

Neglect powers of x greater than x 1, and use the fact that at equilibrium the forward and reverse rates 
are equal: 

to obtain 

dx 
dt "" -(4k,[A]0q + kb)X so 

I 
- "" 4k, [A],q + kb 
r 
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To get the desired expression, square the reciprocal relaxation time, 

(*) 

introduce [A] 101 = [A],q + 2[A2]oq into the middle term, 

and use the equilibrium condition again to see that the remaining equilibrium concentrations cancel each 

other. 

COMMENT. Introducing [A]t01 into just one term of eqn • above is a permissible step, but not a very 

systematic one. It is worth trying because of the resemblance between eqn • and the desired expression: we 

would be finished if we could get [A]101 into the middle term and somehow get the first term to disappear! 

A more systematic but messier approach would be to express [A]eq in terms of the desired [A hot by using 

the equilibrium condition and [A] 101 = [A]eq + 2[A2 ]eq: solve both of those equations for [A2 ]eq, set the two 

resulting expressions equal to each other, solve for [A]eq in terms of the desired [A]tot, and substitute that 
expression for [A]eq everywhere in eqn *. 

I 
(b) Plot? vs. [A1tot· The resulting curve should be a straight line whose y-intercept is k~ and whose ,_ 
slope is 8k,kb-

(c) Draw up the following table: 

[A] 101 /(mol dm- 3
) 0.500 0.352 0.251 0.151 0.101 

r/ns 2.3 2.7 3.3 4.0 5.3 

l/(rjns)2 0.189 0.137 0.092 0.062 0.036 

The plot is shown in Figure 22.4. 

They-intercept is 0.0003 ns-2 and the slope is 0.38 ns-2 dm3 mol- 1, so 

and 

kb = [3 X w-4 X oo-9 s)-'J'I' = (3 X 10 14 s-2) 112 =luX 107s- 1 I 

-0.38 X oo-9
s)-

2
dm

3 
mol-l -127 09d 3 1-1 -II 

k 1 - -_.xi mmo s. 
' 8 x (1.7 x 107 s- 1) 

- 9 
2.7 x IO = 11.6 x lo'l 
1.7 X 107 

COMMENT. The data define a good straight line, as the correlation coefficient R2 = 0.996 shows. That 

straight line appears to go through the origin, but the best-fit equation gives a small non-zero y-intercept. 

Inspection of the plot shows that several of the data points lie about as far from the fit line as they-intercept 

does from zero. This suggests that y-intercept has a fairly high relative uncertainty, and so do the rate 

constants. 
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<'~ 

0.2 

0.18 

0.16 

0.14 

0.12 

1. 0.1 
:: 
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0.02 
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y = 0.379 X + 0.0003 
R2 = 0.996 

/ 
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/ 
/ v 
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./ 

/ 
/ 

/ 
/ 

0.3 0.4 0.5 

Apply the equation derived in P22.5 to the rate constant data in pairs 

-R In (k/k') 
E -
'- ((1/T)- (1/T')) 

TfK 300.3 300.3 341.2 

T'jK 341.2 392.2 392.2 

10-7 kj(dm3 mol-l s- 1) 1.44 1.44 3.03 

10-7 k'j(dm3 mol-l s- 1) 3.03 6.9 6.9 

E,j(kJ mol- 1) 15.5 16.7 18.0 

Figure 22.4 

The mean is lt6.7 kJ mol- 1 I. Compute A from each rate constant, using the mean £ 3 and A = keEa/RT_ 

T/K 300.3 341.2 392.2 

10-7 k/(dm3 mol- 1 s- 1) 1.44 3.03 6.9 

E,jRT 6.69 5.89 5.12 

10-to A/(dm3 mol- 1 s- 1) 1.16 1.10 1.16 

The relation between the equilibrium constant and the rate constants is obtained from 

e B e k 
tJ.,G = -RT InK = tJ.,H - T tJ.,S and K = /? 
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Setting the temperature-dependent parts equal yields 

tl,H" = E,- E; = [ -4.2- (53.3)] kJ mol- 1 = -57.5 kJ mol- 1 

Setting the temperature-independent parts equal yields 

exp ( tl~e) = (:,) 

so tl,s• = Rln (:,) = (8.3145 J K- 1 mol- 1
) In ( i.:: i~~) = -41.1 J K- 1 moi- 1 

The thermodynamic quantities of the reaction are related to standard molar quantities 

so tlrH 9 (CzHs) = tlrH 9 (CzH6) + tlrH"(Br)- tlrH"(HBr)- tl,H 9 

and tlrH"(CzHs) = [(-84.68) + 111.88- (-36.40)- (-57.5)] kJ mol- 1 = l121.2 kJ mol- 1 I 
Similarly 

s:(C2H5) = [229.60 + 175.02- 198.70- (-41.1)] J mol- 1 K- 1 = 1247.0 J K- 1 mol- 1 I 

Finally 

but 

tlrG"(CzHs) = [ -32.82 + 82.396- ( -53.45)] kJ mol- 1 
- tl,G" 

= 103.03kJmoi- 1 - tl,G" 

tl,G" = tl,H" - T tl,S" = -57.5 kJ mol-l - (298 K) X ( -41.1 X w-3 kJ K- 1 mol-l) 

= -45.3kJmol- 1 

so tlrG9 (C,Hs) = [103.03- (-45.3)] kJ mol- 1 = 1148.3 kJ mol- 1 I 

Solutions to theoretical problems 

We assume a pre-equilibrium (as the initial step is fast), and write 

[A]' 
K = [Az]' implying that [A]= K1i2[A2]1i2 

The rate-determining step then gives 
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Let the initial concentrations be [A]o = Ao, [B]o = Bo, and [P]o = 0. Then, when Pis formed in 
concentration x, the concentration of A changes to Ao- 2x and that of 8 changes to Bo- 3x. Therefore 

d[P] dx - = - = k(Ao - 2x)(Bo - 3x) with x = 0 at I = 0. 
dl dl 

r k d I = r -:-:-----::-7"""dx_·-:-;:--;:-:
Jo lo (Ao - 2x) x (Bo - 3x) 

( 
-I ) ( r dx r dx ) 

= 2Bo- 3Ao x }0 x- (I/2)Ao- Jo X- (lj3)Bo 

kr = x In - -In ( 
-1 ) [ (x-~Ao) (x-1Bo)] 

(2Bo-3Ao) -iAo -1Bo 

( 
-1 ) ((2x-Ao)Bo) 

= 2Bo- 3Ao In Ao(3x- Bo) 

( 
1 ) ((2x-Ao)Bo) 

= (3Ao -2Bo) In Ao(3x-Bo) 

The rate equations are 

d~~] = -k,[A] + k;[B] 

d[B] = k,[A]- k;[B]- kb[B] + k~[C] 
dl 

d[C] ' dt = kb[B] - kb[C] 

These equations are a set of coupled differential equations and, though it is not immediately apparent, 
they do admit of an analytical general solution. However, we are looking for specific circumstances under 
which the mechanism reduces to the second form given. Since the reaction involves an intermediate, let 
us explore the result of applying the steady-state approximation to it. Then 

d[B] , , 
- = k,.[A]- k,.[B]- kb[B] + kb[C] = 0 
dl 
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This rate expression may be compared to that given in the text [Section 22.4] for the mechanism 

k 
A-;28 

k' [ 
k" ] hereA~C 
kelT 

The solutions are [A] = orr ,' x [A]o [22.23] (
k' + k rre-(k~rr+kc[l")/) 

kerr + k~rr 
and [C] = [A]o - [A] 

Thus, the conditions under which the first mechanism given reduces to the second are the con

ditions under which the steady-state approximation holds, namely, when B can be treated as a 

I steady-state intermediate J. 

Let the forward rates be written as 

and the reverse rates as 

The net rates are then 

But [A] = [A]o and [D] = 0, so that the steady-state equations for the net rates of the individual steps are 

From the second of these equations we find 

k,[B] 
[C] --

- k' +k 2 J 

After inserting this expression for (CJ into the first of the steady-state equalions we oblain 

which yields, upon isolaling [Bl, 
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Thus, at the steady state 

COMMENT. At steady state, not only are the net rates of reactions 1, 2, and 3 steady, but so are the 

concentrations [B] and [C]. That is, 

diBI A k' k B k' C 0 dt=k1l lo-t,+ 2>1 I+ 21 i"' 

and d~~J = k,IBJ- tk2 + k3)(C] "'0 

In fact, another approach to solving the problem is to solve these equations for [B] and [C]. 

d[A] , 
-- = -2k"[A]- + 2kb[Ao] 

dl -

Define the deviation from equilibrium x by the following equations, which satisfy the law of mass 

conservation. 

[A] = [Ab1 + 2x and [A,] = [A,],q - x 

Then, 

d([A],q + 2t) , 
dt = -2k,([A],q + 2\')- + 2kb([A,],q - x) 

cLr 1 1 1 dl = -k,([A]0q + 2t)- + kb([A,],q- x) = -k"([AJ;q + 4[A],qx + 4x-) + kb([A,],q - x) 

= -j4k,.r2 + (kb + 4k"[A],q)x + k,[AJ;q- kb[A2]oq l 
= -1 (kb + 4k"[A],q).r + k,[AJ;q- kb[A,],q] 

In the last equation the term containing x1 has been dropped because x will be small near equilibrium 

and the x 2 term will be negligibly small. The equation may now be rearranged and integrated using the 

following integration, which is found in standard mathematical handbooks. 

--- = - ln(aw +b) f dw I 

aw+b a 

f d.x - - J dr + constant 
(kb + 4k"[A] 0q)x + k"[AJ~q- kb[A2]oq -

t ' .,.,.---:-:---:-c-:--c ln((kb + 4k"[A],q)x + k"[AJ;q- kb[A,]"1) = -r +constant 
(kb + 4k"[A],q) 

In (2'_) = -(kb + 4k"[A]0q)1 where y = (kb + 4k"[A],q)x + k,[AJ;q- kb[A2]oq 
Yo 

y = yoe-(kb+4ka[A]cq)r 
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Comparison of the above exponential to the decay equation y = yoe-tfr reveals that 

I 
r = .,...--,---;-;--c;-:-;

kb + 4k,[A],q 

Note that this equation can be used as an alternate derivation of the equation discussed in problem 22.14. 

The manipulations use the facts that K = [A2loq/[AJ~q = k,fkb and [A]101 = [A],q + 2[A2]oq by 
conservation of mass, which can be used to show that 

or 
2k, 2 
-;q;-[AJ,q + [A],q- [A].01 = 0 

This quadratic equation can be solved for [A]cq· 

[A] = ~ ( I + 8k,[Altot _ I) 
cq 4ka kb 

I 
Substitution of this equation into 2 = (kb + 4ka[A]cq)2 and some algebraic manipulation yields the 

r 
I 2 

result of problem 22.14: --, = kb + 8k,kb[A]101 • 
r-

Solutions to applications 

The first-order half-life is related to the rate constant by eqn 22.13 

ln2 
1ij2=k 

In 2 In 2 2 1 
SO k = - = -- = 2.47 X 10- y-

11/2 28.1 y 

The integrated rate law tells us 

-kt so m=moe 

where m is the mass of 90Sr. 

(a) After 18 y: m = (1.00 fJ,g) x exp[-(2.47 x 10-2 y- 1) x (18 y)] =I 0.642 fJ,g I 
(b) After 70 y: m = (1.00 f). g) x exp[ -(2.47 x 10-2 y- 1) x (70 y)] =I 0.177 fJ,g I 

k] b 
(a) A --+ B ----'----> C 

The peak concentration of B, [P],, immediately after administration of the nth dose, each of which 
have been administered at the time interval T, is given by the sum: 

"' [P]" = (8]
0 
+ [B]

0
e-*'' + [B]oc-Y:,• + ...... + [8]0e-(n-l)~,, = [B]o k e ... k,, 

Cone. ! 
contribution 
of nth dose 

~aindcr ~nder ~ .....oremainder 
of(n-l)1h of(n-2)!h of ts1 

dose dose dose 
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The residual concentration of B, [R]n, just before administration of the (n + 1 )1h dose results from 
the first-order elimination of [P], : [R], = [P],.e-''' [22.12 a,b], 

00 

[P]00 = lim [P], = [B]o '<' e-"''" = [B]o (1 + x + x2 +···)where x = e_,,, < I 
/1-loOO L..., 

m=D 

This may be simplified using the Taylor series: 1 + x + x2 + · · · = - 1
- = ____!_,.._ when x < 1-x 1-e-~2~ 

We conclude that I [P]oo = [B]o (! - e-'"r
1 

\-

" Il-l 
Furthennore, [R]11 = [B]0e-kF L e-mk2r = 

m=D 

[B]o L e-mk2r 

m=l 

[B] e-'" [B] ( )-1 [R] = [P] e_,,, = "---'.:..0 ---,--c- 0 = [B]o e'''- I 
oo oo 1 - e k2r - ek2r - I 

[P]oo- [Rloo = [B]o I (I- e-'"r
1

- (e''' -!r
1

) 

= [B]o I (I- e_,,,) -I -e_,,, (I - e-'") -I) 

= [B]o I (1 -e-''') (t-e-'''t) =I [B]o I 

(b) (i) Solving the equation [P]00 = [B]o (! - e-''') -I for r gives: 

[B]o = I - e_,,, 
[P]oo 

or e_,,, = I - [B]o 
[P]oo 

or - br =In (1 - [B]o ) 
- [P]oo 

Figure 22.5(a) shows peak and residual drug concentrations against the number of administra

tions. Figure 22.5(b) shows the concentration variation with time. It clearly demonstrates the 

peak and residual concentration and the elimination decay between drug administrations. 

(ii) By using the trace function of the plot, or by directly reading the graph, it is found that [P], is 

75% of the maximum value when n = [II]. 

175%max = (n - 1 )r 

= (13- 1)(3.65 h) 

= 43.8h 

(iii) The magnitude of the variation [P], - [R], may be reduced by reducing the drug dosage [B]o. 
However, in order to avoid changing [P]00 it becomes necessary to reduce r. 

(c) For first-order absorption and zero-order elimination of a single dose [A ]o: 

d[A] = k1 [A] and [A]= [A]oe-''' [22.12a, b] 
dr 
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[P[,./ [8[0 ------------ -------
[R] 11 /(B]0 

-

10 20 30 40 50 

" 

OL--------L--------~-------L------~ 
0 50 100 150 200 

r/h 

d[B) k r dt = k1 [A]- k, = k1 [A Joe- ' - k2 

I [B] = [A]o (!- e-'•')- kztl 

Figure 22.5(a) 

Figure 22.5(b) 
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0.8 
[AJ0 = 0.1 mmol dm-3 

0.6 

0.4 

0.2 

0 
0 5 10 IS 20 25 

r I h Figure 22.5(c) 

The plot of [B]/[A]o (Figure 22.5(c)) shows rapid absorption of the drug into the blood followed 
by the slower, linear elimination that corresponds to zeroth-order elimination. Elimination occurs 

within 25 h with these rate constants. 

(d) Let {[B]max. lmaxl be the maximum of a curve such as that shown above. To find formulas for this 

point, we must examine the curve at the point for which d[B]/dt = 0. 

d[B] , , 
-- = k1[A]oe- 1 ma~- b = 0 

dl -

or 

lmax - - In ---_ I (k,[A]o) 
kl k2 

Analysis ofNMR lineshapes can be used to infer time scales of protein folding or unfolding steps. Protons 
(or other nuclei, for that matter) that have different chemical shiFts in folded and unfolded proteins will 

yield a single peak if the time scale for interconversion (i.e. for folding or unfolding) is comparable to or 
less than the reciprocal of the two peaks' frequency difference. Monitoring the change from two peaks 

(indicating that a sample contains both folded and unfolded proteins, which might be observed at one 

temperature) to a broad single peak (indicating fast interconversion, which might be the case at a higher 
temperature) can allow the determination of the time constant for the conversion. One advantage of 
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NMR over vibrational or electronic spectroscopy is that the radiation used to probe the system is much 

less energetic, and therefore much less likely to alter the folding or unfolding process it is designed to 

investigate. The lineshape strategy cannot be used to investigate processes as fast as those accessible by 
electronic or vibrational spectroscopy. (cf. Example 15.2.) 

First, turn eqn 22.30 into an expression involving the functional forms given in the data: 

2 dlnk 2 dink d(I/T) dink 
0 

dlogk 
E, = RT dT = RT d(I(T) ----;IT= -R d(I(T) = -Rin(l ) d(I(T) 

= -Rin(IO)~ (11.75- ~~~) = -(8.3145JK- 1 mol- 1)ln(I0)(-5488K) 

= l105 kJ mol-l I 

t>,G"' = -RT!n K = -RT!n(IO) log K [seclion 7.2d for D.,G"'l 

At 298.15 K 

( 
1794 ) t>,G"' = -(8.3145JK- 1 mol- 1) x (298.15K)ln(IO) -1.36+ 

298
_
15 

t>,G"' = l-26.6klmol- 1 I 

t>,H"' = -R d ln(K) [7.23b] = -R ln(IO) d log(K) 
d (I(T) d(I(T) 

= -Rln(IO)-d- (-1.36+ 
1794

) = -(8.3145JK- 1 mol- 1)ln(l0)(1794K) 
d(I/T) T /K 

= 1'--3-4.-3 _kJ_m_o_l_.,-,1 I 

The reaction is 

0 0 

"':J HN 
CH,OH 

+ HCHO 

~N I ~N 
H H 

The equations for the rate constant k and the equilibrium constant K were obtained under conditions 
corresponding to the biological standard state (pH= 7, p = 1 bar; Section 7.2d). Thus the values of 
6.rG calculated from the equation forK are ~rGffi values which can differ significantly from /j.rG 9 (pH 

= I, p = 1 bar). Prebiotic conditions are more likely to be near pH = 7 than pH = 1 so we expect that 
the reaction will still be favorable (K » I) thermodynamically. 

Because 6.rG = .6.rGffi + RT In Q [7 .II] and since we might expect Q < l in a prebiotic environment, 

lirG < L\..rGffi. But, as shown in the calculation above, .6.rGEB is rather large and negative ( -26.6 kJ 
mol- 1 ), so we expect it will still be large and negative under the prebiotic conditions; hence the reaction 

will be spontaneous for these conditions. We expect that 6.rH :::=::: 6.rHffi because enthalpy changes 

largely reflect bond breakage and bond fonnation energies. 
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7 k(T) 

-; 6 . 
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0 
E 4 

'E 
3 ~ . 

' 
" 2 
::::: 
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0 
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T/K Figure 22.6(a) 

1.8 

1.6 K(T) 

1.4 

1.2 

~ 1.0 

:< 0.8 

0.6 

0.4 

0.2 

0.0 
270 280 290 300 310 320 330 

(b) 
T/K Figure 22.6(b) 

A plot of the equation for the rate constant k is shown in Figure 22.6{a) and that for the equilib
rium constant in Figure 22.6(b). From a kinetic point of view the reaction becomes more favorable at 
higher temperatures; from a thermodynamic point of view it becomes less favorable, but K >> I at all 
temperatures. 

(a) The rate of reaction is 

v = k[CH4][0H] 

= (l.l3 x 109 dm3 mol- 1 s- 1) x exp 
1 1 ( 

-l4.lxl03Jmol- 1 
) 

(8.3145 1 K mol ) x (263 K) 

X (4.0 X lO-S mol dm-3) X (!.5 X lO-IS mol dm-3) = ll.l X !0- 16 mol dm-)S-l 
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(b) The mass is the amount consumed (in moles) times the molar mass; the amount consumed is the rate 
of consumption times the volume of the "reaction vessel" times the time. 

Ill= MvVt = (0.01604 kg mol- 1) X (I. I X 10- 16 mol dm-3 ,-') 

X (4 X 1021 dm3
) X (365 X 24 X 3600 s) 

=12.2 x 10 11 kgor220Tgl 

The initial rate is 

The half-life for a second-order reaction is 

I 
''I" - -:-::=:-=c:c:- k'[HS03 ]0 

where k' is the rate constant in the expression 

d[HSOj] = k'[HSo-)' 
dt 3 

Comparison to the given rate law and rate constant shows 

k' = 2k[H+J' = 2(3.6 X 106 dm9mol-3 s- 1) X (I0-4·5 mol dm-3 ) 2 

= 7.2 X 10-3 dm3 mol-l S-l 

and ltf2 = 3 = 12.8 x 105 s = 3 days I 
(7.2 x 10 3 dm3 mol 1 s 1) x (5 x 10 4 mol dm ) · · 
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23 The kinetics of complex 
reactions 

023.2 

023.4 

Answers to discussion questions 

In the analysis of stepwise polymerization, the rate cons tam for the second-order condensation is assumed 

to be independent of the chain length and to remain constant throughout the reaction. It follows, then, 

that the degree of polymerization is given by 

(n) = I + kt[A]o 

Therefore, the average molar mass can be controlled by adjusting the initial concentration of monomer 

and the length of time that the polymerization is allowed to proceed. 

Chain polymerization is a complicated radical chain mechanism involving initiation, propagation, and 

termination steps (see Section 23.4 for the details of this mechanism). The derivation of the overall rate 

equation utilizes the steady state approximation and leads to the following expression for the average 

number of monomer units in the polymer chain: 

(n) = 2k [MJ [W'i2 , 

where k = ( l/2)kp (Jkikd -l/2 , with kp, ki, andkt, being the rate constants for the propagation, initiation. 

and termination steps, and/ is the fraction of radicals that successfully initiate a chain. We see that the 

average molar mass of the polymer is directly proportional to the monomer concentration, and inversely 

proportional to the square root of the initiator concentration and to the rate constant for initiation. 

Therefore, the slower the initiation of the chain, the higher the average molar mass of the polymer. 

Refer to eqns 23.26 and 23.27, which are the analogues of the Michaelis-Menten and Lineweaver-Burk 

equations (23.21 and 23.22), as well as to Figure 23.13. There are three major modes of inhibition that 

give rise to distinctly different kinetic behavior (Figure 23.13). In competitive inhibition the inhibitor 

binds only to the active site of the enzyme and thereby inhibits the attachment of the substrate. This 

condition corresponds to a > I and a' = I (because ESI does not form). The slope of the Lineweaver

Burk plot increases by a factor of a relative to the slope for data on the uninhibited enzyme (a = c/ = I). 

They-intercept does not change as a result of competitive inhibition. In uncompetitive inhibition, the 

inhibitor binds to a site of the enzyme that is removed from the active site, but only if the substrate is 

already presenl. The inhibition occurs because ESI reduces the concentration ofES, the active type of the 

complex. In this case a = I (because EI does not form) and c:/ > I. They-intercept of the Lineweaver

Burk plot increases by a factor of a' relative to they-intercept for data on the uninhibited enzyme, but the 

slope does not change. In non-competitive inhibition, the inhibitor binds to a site other than the active 

site, and its presence reduces the ability of the substrate to bind to the active site. Inhibition occurs at 

both theE andES sites. This condition corresponds to a > I and a' > I. Both the slope andy-intercept 
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of the Lineweaver-Burk plot increase upon addition of the inhibitor. Figure 23.13c shows the special 

case of K1 = K{ and a =a', which results in intersection of the lines at the x-axis. 

In all cases, the efficiency of the inhibitor may be obtained by determining KM and Vmax from a control 
experiment with uninhibited enzyme and then repeating the experiment with a known concentration 

of inhibitor. From the slope and y-intercept of the Lineweaver-Burk plot for the inhibited enzyme 
(eqn 23.27), the mode of inhibition, the values of a or a', and the values of KJ, or K{ may be obtained. 

The shortening of the lifetime of an excited state is called quenching. Quenching effects may be studied 

by monitoring the emission from the excited state that is involved in the photochemical process. The 
addition of a quencher opens up an additional channel for the deactivation of the excited singlet state. 

Three common mechanisms for bimolecular quenching of an excited singlet (or triplet) state are: 

Collisional deactivation: 

Energy transfer: 

Electron transfer: 

s• + Q .... s + Q 

S' + Q--> S + Q' 

S' + Q --> s+ + Q- or s- + Q+ 

Collisional quenching is particularly efficient when Q is a heavy species, such as iodide ion, which 

receives energy from S"' and then decays primarily by internal conversion to the ground state. Pure 

collisional quenching can be detected by the appearance of vibrational and rotational excitation in the 
spectrum of the acceptor. 

In many cases, it is possible to prove that energy transfer is the predominant mechanism of quenching if 

the excited state of the acceptor fluoresces or phosphoresces at a characteristic wavelength. In a pulsed 
laser experiment, the rise in fluorescence intensity from Q* with a characteristic time which is the same 

as that for the decay of the fluorescence of S* is often taken as indication of energy transfer from S to Q. 

Electron transfer can be studied by time~resolved spectroscopy (Section 14.6e). The oxidized and reduced 

products often have electronic absorption spectra distinct from those of their neutral parent compounds. 

Therefore, the rapid appearance of such known features in the absorption spectrum after excitation by a 
laser pulse may be taken as indication of quenching by electron transfer. 

Solutions to exercises 

In the following exercises and problems, it is recommended that rate constants are labeled with the 

number of the step in the proposed reaction mechanism and that any reverse steps are labeled similarly 

but with a prime. 

E23.1(b) The intermediates are NO and N03 and we apply the steady~state approximation to each of their 

concentrations 

k2 [N02] [N03] - k3 [NO] [N20 5] = 0 

k1 [N20 5]- k; [NO,] [N03]- k, [NO,] [N03] = 0 

I d [NzOs] 
Rate= 

2 dt 

d [N,Os] , 
dt = -k, [N20s] + k1 [NO,][N03]- k3[NO][N20 5] 
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From the steady-state equations 

k3 [NO] [N20sl = k2 [N02] [N03] 

[NO ] [NO ] = k, [N,Os] 
2 3 k;+k2 

Substituting, 

d [R] ( '] 2 dt = 2k, [R2] - k2 [R] [R2l + k, R - 2k4 [R] 

d (R'] 
-- = k2 [R] [R2l - k, (R'J 

dt 

Apply the steady-state approximation to both equations 

2k, [R2l - k2 [R] [R2l + k, (R'J- 2k4 [R]2 = 0 

k2 [R] [R2l - k3 (R'J = 0 

k, 
The second solves to [R'] = -[R][R,] 

k, 

(
k ) 1/2 

and then the first solves to [R] = k~ [R2l 

d[R,] (k')l/2 ' Therefore, dr = -k, [R2] - k2 [R2] [R] = k1 [R2] - k2 !Z; [R2l" /2 

E23.3(b) (a) The figure suggests that a chain-branching explosion I does not occur I at temperatures as low as 
700 K. There may, however, be a thermal explosion regime at pressures in excess of I 06 Pa. 

(b) The lower limit seems to occur when 

log (p/Pa) = 2.1 so p = 102·1 Pa = lu x 102 Pa I 
There does not seem to be a pressure above which a steady reaction occurs. Rather the chain
branching explosion range seems to run into the thermal explosion range around 

log (p/Pa) = 4.5 so p = 104·5 Pa = 13 x 104 pa I 

E23.4(b) The rate of production of the product is 
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HAH+ is an intermediate involved in a rapid pre-equilibrium 

[HAH+ J = ~so [HAH+J = k, [HA] (H+ J 
[HA] (H+ J k; k; 

and d (BH+J = k,~, [HA] (H+J [B] 
dl k, 

'--'-------' 

This rate law can be made independent of [H+] if the source of H+ is the acid HA, for then H+ is given 

by another equilibrium 

[H+J[A -] = K. = [H+J' so [H+J = (K [HA]) 1i 2 

[HA] ' [HA] " 

d[BH+] 
and---= 

di 

k k K 112 
1 2 ' [HA]3i2[B] 

k' I 

E23.5(b) Az appears in the initiation step only. 

d[Az] 
-- =-kl [Az] 

d/ 

Consequently, the rate of consumption of [Az] is first order in Az and the rate is independent of 
intermediate concentrations. 

E23.6(b) The maximum velocity is kb [E]o and the velocity in general is 

kb [S] [E]o KM + [S] 
v = k [E]o = so Vmox = kb [E]o = v 

KM + [S] [S] 

(0.042 + 0.890) mol dm-
3 

-4 -3 -I 1 -4 3 1 1 
Vmox = 3 (2.45 x I 0 mol dm s ) = ,_2_.5_7_x_l_O __ m_o_l d_m_-_s_--' 

0.890moldm 

E23.7(b) The quantum yield tells us that each mole of photons absorbed causes 1.2 x 102 moles of A to react; 
the stoichiometry tells us that 1 mole of B is formed for every mole of A which reacts. From the yield of 

1.77 mmol B, we infer that 1.77 mmol A reacted, caused by the absorption of 1.77 x 10-3 mol/(1.2 x 

102 mol Einstein-!) = \t.5 X w-5 moles of photons I 
E23.8(b) The quantum efficiency is defined as the amount of reacting molecules 11A divided by the amount of 

photons absorbed llabs· The fraction of photons absorbed/abs is one minus the fraction transmitted/trans; 

and the amount of photons emitted llphoton can be inferred from the energy of the light source (power P 

times time/) and the energy of the photons (he/!..). 

IIAhcNA 
<I> = -~-'-'c-=

(I -Jim"') !..PI 

(0.324 mol) X (6.626 x 10-34 J s) X (2.998 x 108 m S-l) X (6.022 X !023 mol-l) 

(I- 0.257) X (320 X 10 9 m) X (87.5W) X (28.0 min) X (60s min I) 

=[Iill 
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Solutions to problems 

Solutions to numerical problems 

P23.2 0 + Clz-> CIO + Cl p (Ciz)"' constant [Ciz at high pressure] 

Therefore, the reaction is probably pseudo-first order, and 

. [O]o , d 
That bemg so. In -- = k I = k [Ciz] I = k [Ciz] x -

[0] v 

where k' = [Clz] k, v is the flow rate, and d is the distance along the tube. We draw up the following 

table 

dfcm 0 2 4 6 8 10 12 14 16 18 

In [O]o 
[0] 

0.27 0.31 0.34 0.38 0.45 0.46 0.50 0.55 0.56 0.60 

The points are plotted in Figure 23.1. 

0.6 

0.5 

0 
~ 

0 0.4 

:s 
0.3 

i"""'i 
: ...... .;. 

i ...... l 
... · ...... ;. 

0 10 
dfcm 

20 

. k [Ciz] 1 The slope IS 0.0189, and so--= 0.0189cm- . 
v 

(0.0189cm- 1) x v 
Therefore. k = [Ciz] 

Figure 23.1 

(0.0189cm- 1
) x (6.66 x 102 cms- 1

) I 7 3 -1 -II 
= = 5.0 x 10 dm mol s 

2.54 x w-1 mol dm 3 

(There is a very fast 0 + CIO ~ CI + 02 reaction, and so the answer given here is actually twice the 

true value.) 
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H, --> 2H· initiation, V = Vinit 

H · +Oz--> -OH+-0· branching, v = kt [H·] [Oz] 

-0 ·+Hz --> -OH + H- branching, v = k, [·0·] [H,] 

H · +02--> HOz- propagation, v = k3 [H·] [Oz] 

H02 ·+Hz --> HzO + -OH propagation, v = k4 [HOz·] [H2] 

H02 · +wall --+ destruction termination, v = k5 [HO,-] 

H · +M --;)- destruction termination, v = k6 [H·] [M] 

We identify the onset of explosion with the rapid increase in the concentration of radicals which we 
initially identify with [H·]. Then 

Intermediates are examined with the steady-state approximation. 

d[-0·] 
-- = kt [H·] [Oz]- kz [·0·] [H2] "'0 

dt 

k. ,JCC[HC::,.·;-?][-:-0''-'] [·O·lss"'-
kz [H,] 

Therefore, 

(
kt [H·] [0']) 

"~d = v;,;,- kt [H·] [Oz] + kz kz [Hz]- [H,]- k3 [H·] [Oz]- k6 [H·] [M] 

= v;,;1 - (k3 [Oz] + ko[M]) [H·] 

The factor (k3 [02] + k6 [M]) is always positive and, therefore, Vrad always decreases for all values of 
[H·]. No explosion is possible according to this mechanism, or at least no exponential growth of [H·] is 

observed. 

Let us try a second approach for which the concentration of radicals is identified with [ ·0·]. 

l'md = kt [H·] [Oz]- kz [·0·] [Hz] 

Using the steady-state approximation to describe [H·], we find that 

H v;,;, + k, [Hz][·O·] 
[ ·lss = (kt + k3) [0,] + k6 [M] 

"~d = v;,;1k 1 [02] + ( ktkz [Hz] [Oz] _ kz [H,]l [-O-] 
(kt + k3) [Oz] + k6 [M] (kt + k3) [Oz] + k6 [M] 

This has the form 

d [-0-] 
v~d = -- = Ct + [C,- C3) [-0·] 

dt -

where C1, C2, and C3 are always positive. This means that the mechanism predicts exponential growth of 

radicals, and explosion, when Cz > C3. This will occur when kt [O,](((kt + k3)[02l + k6 [M]) > I. 
But this is not possible. So no exponential growth of [ ·0·] can occur. The proposed mechanism is 

inconsistent with the existence of an explosion on the assumption that the steady-state approximation 
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can be applied to the intermediates Hand ·0·. It is, however, unlikely that the steady-state approximation 

can be applied to explosive reactions, and this is where lhe analysis breaks down. 

P23.6 uo~+ + hv --. (Uo~+)• 

P23.8 

(UO~+)' + (COOH)z --. UO~+ + H20 + C02 +CO 

2MnO; + 5(COOH)z + 6H+ --. IOC02 + 8H20 + 2Mn2+ 

17.0cm3 of 0.212 M KMn04 is equivalent to 

~ x (17.0cm3) x (0.212 moldm-3) = 9.01 x w-3 mol (COOH)z 

The initial sample contained 5.232 g (COOHh. corresponding to 

5.232g 
.,-,-,----=c..__,, = 5.81 X w-2 mol (COOHh 
90.04gmol 

Therefore. (5.81 x w-2 mol)- (9.01 x w-3 mol)= 4.91 x w-2 mol of the acid has been consumed. 
A quantum efficiency 0.53 implies that the amount of photons absorbed must have been 

4.91 X 10-2 mol 
9 0.53 = ·3 

X 
w-2 mol 

Since the exposure was for 300 s, the rate of incidence of photons was 

9.3 X 10-2 mol 4 1 
---,--,-,--- =3.1 X 10- mois-

300s 

Since I mol photons = 1 einstein, the incident rate is 13.1 X I o-4 einstein s- 1 I or lr.9 X l 020 s- 1 I 

M+llu1 ~ M*, 

M'+Q--> M+Q, 
M*~M+hvr, 

Ia [M = benzophenone] 

kq 
kr 

d[M'] 
--=I,- kr[M']- kq[Q][M'] "'0 [steady state] 

dt 

I, 
and hence [M'] = .,..-.,.--:'--;= 

kr + kq [Q] 

krl, 
Then lr = kr[M'] = ~...."c'"-

kr + kq [Q] 

I I kq [Q] 
andso -=-+--

lr I, krl, 

If the exciting light is extinguished, [M*], and hence fr, decays as e-krr in the absence of a quencher. 

Therefore we can measure kq/krla from the slope of 1/lr plotted against [Q], and then use kr to 

determine kq. 
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We draw up the following table 

5 10 

I fir 2.4 4.0 6.3 

The points are plotted in Figure 23.2. 

lr 

0 0.005 

[Q]/(mol dm-3) 

0.010 

Figure 23.2 

The intercept lies at 2.0, and so I, = 1/2.0 = 0.50. The slope is 430, and so 

~ = 430dm3 mol- 1 

krl, 

Then, since I,= 0.50 and kr = ~. 
lt/2 

( 
In 2 

X 29 X 10 

I 
or - = 1 + (R/Ro)6 [23.38] 

ET 

Since a plot of Ef 1 values against R6 (Figure 23.3) appears to be linear with an intercept equal to 

I, we conclude that eqn 23.38 adequately describes the data. Solving eqn 23.38 for Ro gives Ro = 

R(Ef 1
- 1) 116 . Ro may be evaluated by taking the mean of experimental data in this expression. The 

two data points at lowest R must be excluded from the mean as they are highly uncertain. I Ro = 3.52 nm I 
with a standard deviation of 0.1 i3 nm. 

Solutions to theoretical problems 

CH,CHO--+ -CH3 + -CHO, k, 

· CH3 + CH, · CHO --+ ·CH, + CH, · CHO, kb 

· CH,CHO --+ CO+ · CH,, k, 

· CH, + ·CH, --+ CH,CH,, kd 
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7 

0 
6 

5 

0 
I 4 

£T 0 

3 

0 

2 

0 
0 

10 2 4 6 8 10 

(R/nm)6/103 Figure23.3 

d [CH4] 
-d-

1 
- = -kb [CH3] [CH,CHO] 

d [CH3CHO] 
--'---d-7-1-~ = -k, [CH3CHO] - kb [CH,CHO] [CH3] 

d [CH,] 2 
-d-

1
- = k, [CH,CHO] - kb [CH,CHO] [CH3] + k, [CHzCHO] - 2kd [CH,] = 0 

d[CH,CHO] 
dt = kb [CH3] [CH,CHO]- k, [CH2CHO] = 0 

Adding the last two equations gives 

k,[CH, CHO]- 2kd[CH,J' = 0. 

Therefore 

--
4
- = k -' [CH CH0]3i 2 d[CH] (k )1

'
2 

dt b 2kd 3 

3 = -k,[CH, CHO] - kb -'- [CH, CHOJ312 d[CH CHO] ( k ) 
1
/
2 

~ ~ . 

Note that, to lowest order in k11 , 

d[CH,CHO] "" -kb ~ [CH3CHOJ''' 
( ) 

1/2 

dt 2kd 

and the reaction is three-halves order in CH3CHO. 
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(a) 

" " 
) d d d d 

= M· (I- p)- L:>'p" = M3(1- p)-p-p- I>" 
dp/1 dpdpdpl/ 

-2 M2 (1 +p) 
M" = 2 [Problem 23.13] 

(I - p) 

M' 
Therefore, ~ = 

M" 

M(1+4p+p2) 

I -p' 

I I 
(b) (n) = --[23.8], sop = I - -

I -p (n) 

-3 

M ~ =I (6 (n)2 
- 6 (n) + I) (n) I 

M" 

d[A] 
- = -k[A]2[0H] = -k[A]3 because [A]= [OH]. 

dt 

d[A] 
-- = -kdt and 
[A]' 11AI d[A] = -k [' dt = -kt 

(Aio [A]3 fo 

f dx -I 
Since 3 = -

2
, the equation becomes 

X 2x 

I I 
-

2 
- -

2 
= 2kt or [A]= [A]o(l + 2kt[A]o)- 1i 2 

[A] [A]0 

By eqn 23.8a the degree of polymerization, (11), is given by 

(n) = [~~ =I (I+ 2kt[A]o) 1i 2
1 

d[B] 
A-+ B-- =10 

dt 

B -+ A d[B] = -k[B]2 
dt 

In the photostationary state I, - k[B] 2 = 0. Hence. 

~ [B] =~<X [A] 1i 2 [because I ex [A]] 

The illumination may increase the rate of the forward reaction without affecting the reverse reaction. 

Hence the position of equilibrium may be shifted toward products. 
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Cl2 + l!v -> 2CI I, 

Cl + CHCI3 -> CCI) + HCI k2 

CCI) + Cl2 -> CCI, + Cl k3 

2CCI3 + C\z -> 2CCI, k, 

d [CCI,] 2 (i) dt = 2k, [CCI3] [CI2] + k3 [CCI3] [CI2] 

(ii) d [~~IJ] = k2 [CI] [CHCI3] - k3 [CCI,] [CI2] - 2k, [CCbf [CI2l = 0 

(iii) d [CI] = 2I, - k2 [CI] [CHCI3] + k3 [CCI,] [Ch] = 0 
dt 

(iv) d [CI2] = -I, - k, [CCI3] [CI2l - k, [CCI,]' [CI2l 
dt 

Therefore, I,= k, [CCI3]2 [CI2l [(ii) +(iii)] 

which implies that 

( 
1 ) 1/2 ( I, ) 1/2 

[CCI,]= - -
k, [CI2l 

Then, with (i), 

d [CCI,] k,I; 12 [CI] 1i 2 

dt = 2I, + 1/2 
k, 

When the pressure of chlorine is high, and the initiation rate is slow (in the sense that the lowest powers 
of Ia dominate), the second term dominates the first, giving 

1/2 
d [CCI,] = k,I, [CI2]112 = k/;12 [Ch]l/2 

dt kl/2 
4 

with k = k3/k!12 . It seems necessary to suppose that CI + Cl recombination (which needs a third body) 
is unimportant. 

Solutions to applications 

The rate equation is 

dN 
- =bN-dN 
dt 

which has the solution 

I N(t) = NoeCb-d)t = Noe'' I 
A least squares fit to the above data gives 

No= 0.484 x 109 "'0.5 x 109 

k = 9.19 x w-'y- 1 

R2 = (coefficient of determination) = 0.983 
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Standard error of estimate = 0.130 x I 09 

Thus, this model of population growth for the planet as a whole fits the data fairly well. 

COMMENT. Despite the fact that the Malthusian model seems to fit the (admittedly crude) population data it 
has been much criticized. An alternative rate equation that takes into amount the carrying capacity K of the 
planet is due to Verhulst (1836). This rate equation is 

dN ~kN(t- ~) 
dt k 

Question. Does the Verhulst model fit our limited data any better? 

We draw up the table below, which includes data rows required for a Lineweaver-Burk plot (lfv against 
l([S]o). The linear regression fir is found for the plot. See Figure 23.4 

[ATP]/(ILmol dm-3) 0.60 0.80 1.4 2.0 3.0 

v((!J-mol dm-3 s- 1) 0.81 0.97 1.30 1.47 1.69 
1/{[ATP]((ILmol dm-3)) 1.67 1.25 0.714 0.500 0.333 
l({v((ILmoldm-3 s- 1)} 1.23 1.03 0.769 0.680 0.592 

' ~ 
';· 

E 
'0 

0 
E 
=L 
>o: , 

1.4 

1.2 

0.8 

0.6 

0.4 

0 

y = 0.4796x + 0.433I 
R2 = 0.9996 

0.5 1.5 

II ( (ATP}/(~mol dm-3
)) 

l(vm, =intercept [23.22] 

2 

Figure 23.4 

vm, = !(intercept= 1((0.4331J-mol dm-3 s- 1) = 12.31 IJ-ffiOl dm-3 ,-I I 

kb = Vmox I [E]o [23.2Gb] = (2.31 IJ-mol dm-3 s -I) I (0.020 IJ-mol dm-3) = l115 ,-I I 

k,, = kb [23.23] = 1115 ,-I I 

KM = Vmox x slope [23.22] = (2.31 ~J-mol dm-3 s -I) x (0.480 s) =II. II IJ-mol dm-3 1 

e=k,"IKM [23.24] =(115s- 1)1(1.111Lmoldm-3)=1104dm31Lmol-I ,-II 
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(a) The dissociation equilibrium may be rearranged to give the following relationships. 

[E-] = KE.,[EH]/[H+] [EHj] = [EH][H+]/KE.b 

[ES-] = KES.,[ESH]/[H+] [ESH2J = [ESH][H+]/KES.b 

Mass balance provides an equation for [EH]. 

[E]o = [E-] + [EH] + [EHj] + [ES-] + [ESH] + [ESH2] 

= KE.,[EH] + [EH] + [EH][H+] + KEs,,[ESH] + [ESH] + [ESH][H+] 
[H+] KE,b [H+] KEs,b 

EH _ [E]o- [I + ([H+]/ KEs.b) + (KEs,,/[H+])) [ESH] 

[ ] - I + ([H+]/ KE.b) + (KE,,/[H+]) 

[E]0 - c1 [ESH] 
= 

The steady-state approximation provides an equation for [ESH]. 

[ESH] = ~ [EH][S] = kM 1 [EH][S] 
k~ + kb 

= kM 1 [S] { [E]o -:,1 [ESH] ) 

[ESH] = KM
1
[S][E]o/ez = [E]o/Ci 

I+ (kM 1[S]c,(c2) I+ (kM(C2/CI)/[S]) 

The rate law becomes: 

v = d[P]/dt = kb[ESH] 

v:nax v = .,----'7"-coo 
I +k;_./[S] 

h 
, kb[E]o 

w ere v = -.:-.,--====:--"''-:-:-:---::== m" [I + ([H+]/ KES,b) + (KES,,([H+])) 

K' _ { I + ([H+]/ KE.b) + (KE,,/[H+]) l 
M- I+ ([H+](KEs.b) + (KEs,,f[H+]) 

(b) vm, = 1.0 x 10-6 mol dm-3 ,-I 

KEs.b = 1.0 x 10-6 mol dm _, 

KEs,, = 1.0 x 10-8 mol dm - 3 

The graph (Figure 23.5a) indicates a maximum value of v~1ax at pH= 7.0 for this set of equilibrium 

and kinetic constants. A formula for the pH of the maximum can be derived by finding the point at 
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0.1 r---,------,----,-----,----,-----,----

0.8 

"T 
" 7 0.6 E 

< ~ 
~ E o 
~ E 
~ 0.4 =: 

0.2 

oL----L----~---L----~--~~--~---
0 2 4 6 8 10 12 14 

pH 

dv' 
which rn~x = 0. This gives: 

d[H ] 

Inserting constants, [H+lm" = Jo.o X w-Smoldm-3)(1.0 X IQ-6moldm-3) 

= 1.0 X IQ-7moldm-J 

which corresponds to I pH= 7.0 I 

0oL-----2~----L-----L6 ____ _L8 ____ -LI0~--~12~--~14 

Figure 23.S(a) 

pH Figure 23.S(b) 
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(C) Vmnx = 1.0 X 10-6 mol dm-JS-I 

KEs.b = 1.0 X 10-4 mol dm -J 

KEs.o = 1.0 X w- 10 mol dm -J 
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The constants of part (c) give a much broader curve (Figure 23.5b) than do lhe conslanls of pari (b). This 

reflects the behavior of the term 1 + [H+]/KEs,b+KEs.a/[H+] in the denominator of the v~ax expression. 
When KEs,b is relatively large, large [H+] values (low pH) cause growth in the values ofv:nax. However, 
when KEs.a is relatively small, very small [H+] values (high pH) cause a decline in the v:nax values. 

The description of the progress of infectious diseases can be represented by the mechanism 

Only the I first step is autocatalytic I as indicated in the first rate expression. If the three rate equations 
are added 

and, hence there is no change with time of the total population, that is 

S(t) +!(I) + R(l) = N 

Whether the infection spreads or dies out is determined by 

dl 
- = rSl- al 
dr 

At r = 0, I = l(O) = Io. Since lhe process is autocatalytic 1(0) i' 0. 

( dl) =lo(rSo-a) 
dt t=O 

If a > rSo (~) < 0, and the infection dies out. If a < rS, (~) > 0 and the infection spreads 
dt r=O dt t=O 

(an epidemic). Thus 

G [infection spreads] 

G [infection dies out] 

C + Q ~ C* + Q clce~romransfer c+ + Q-
Chlorophyll Quinone 

Direct electron transfer from the ground state of Cis not spontaneous. It is spontaneous from the excited 
state. The difference between the 6.G's of the two processes is given by the expression: 

t.(t.G) = l:.Gc• - t.Gc"' Uc- Uc· "'-WLUMO- UHoMo) 
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where VLUMO and UHoMo are energies of the LUMO and HOMO of chlorophyll. Since 6.6.G < 0, we 
see that electron transfer is exergonic and spontaneous when the electron is transferred from the excited 

state of chlorophyll. 

The rate of reaction is the rate at which ozone absorbs photons times the quantum yield. The rate at which 
ozone absorbs photons is the rate at which photons impinge on the ozone times the fraction of photons 
absorbed. That fraction is I - T, where T is the transmittance. T is related to the absorbance A by 

A = - log T = Eel so I - T = I - 10-ul 

lf we let F stand for the ftux of photons (the rate at which photons impinge on our sample of ozone), 
then the rate of reaction is 

(1 x 1014 cm-2 s- 1) x (1000cm3 dm-3) 

v = q) (I - T) F = (0.94) x (0.38) x (6.022 x J023mol 1) X (!OS em) 

= is.9 X w- 13 mol dm-3s- 1 I 

The rate of reaction for this reaction is 

(a) F= (1.7 X I0 10dm 3mol-ls- 1)exp(-260K/220K) X (5 X w- 17 moldm-3) 

X (8 X 10-9 mol dm-3) 

=12.1 X 10-ISmoidm-3 s-ll 

(b) "= (1.7 X 1010 dm3 mol-ls- 1)exp(-260K/270K) X (3 X w-' 5 moldm-3) 

X (8 X 10-ll moJdm-3 ) 

=11.6 x I0- 15 moldm-3 s- 11 
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Answers to discussion questions 

A reaction in solution can be regarded as the outcome of two stages: one is the encounter of two reactant 

species; this is followed by their reaction in the second stage, if they acquire their activation energy. 
If the rate-determining step is the former, then the reaction is said to be diffusion-controlled. If the 

rate-determining step is the latter, then the reaction is activation controlled. For a reaction of the form 
A+ B--+ P that obeys the second-order rate law v = k2[A][B], in the diffusion-controlled regime, 

where D is the sum of the diffusion coefficients of the two reactant species and R* is the distance at 

which reaclion occurs. A further approximation is that each molecule obeys the Stokes-Einstein relation 
and Stokes' law, and then 

8RT 
k?::::::: -
- 317 

where 17 is the viscosity of the medium. The result suggests that k2 is independent of the radii of the 
reactants. 

In the kinetic salt effect, the rate of a reaction in solution is changed by modification of the ionic strength of 
the medium. If the reactant ions have the same sign of charge (as in cation/cation or anion/anion reactions), 

then an increase in ionic strength increases the rate constant. If the reactant ions have opposite signs (as in 
cation/anion reactions), then an increase in ionic strength decreases the rate constant. In the former case, 

the effect can be traced to the denser ionic atmosphere (see the Debye-Huckel theory) that forms round the 
newly formed and highly charged ion that constitutes the activated complex and the stronger interaction 

of that ion with the atmosphere. In the Iauer case, the ion corresponding to the activated complex has 

a lower charge than the reactants and hence it has a more diffuse ionic atmosphere and interacts with it 
more weakly. In the limit of low ionic strength the rate constant can be expected to follow the relation 

Refer to Figures 24.21 and 24.22 of the text. The first of these figures shows an attractive potential energy 

surface, the second, a repulsive surface. 

(a) Consider Figure 24.21. If the original molecule is vibrationally excited, then a collision with an 

incoming molecule takes the system along the floor of the potential energy valley (trajectory C). 

This path is bottled up in the region of the reactants, and does not take the system to the saddle point. 
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If, however, the same amount of energy is present solely as translational kinetic energy, then the 

system moves along a successful encounter trajectory C* and travels smoothly over the saddle point 
into products. We can therefore conclude that reactions with attractive potential energy surfaces 

proceed more efficiently if the energy is in relative translational motion. Moreover, the potential 
surface shows that once past the saddle point the trajectory runs up the steep wall of the product 

valley, and then rolls from side to side as it falls to the foot of the valley as the products separate. In 
other words, the products emerge in a vibrationally excited state. 

(b) Now consider the repulsive sutiace (Figure 24.22). On trajectory C the collisional energy is largely 
in translation. As the reactants approach, the potential energy rises. Their path takes them up the 

opposing face of the valley, and they are reflected back into the reactant region. This path corresponds 
to an unsuccessful encounter, even though the energy is sufficient for reaction. On a successful 

trajectory C*, some of the energy is in the vibration of the reactant molecule and the motion causes 
the trajectory to weave from side to side up the va1ley as it approaches the saddle point. This motion 

may be sufficient to tip the system round the comer to the saddle point and then on to products. In 

this case, the product molecule is expected to be in an unexcited vibrational state. Reactions with 
repulsive potential surfaces can therefore be expected to proceed more efficiently if the excess is 

present as vibrations. 

Donor (D) and acceptor (A) must collide before they can react. Consequently, the rate of their reaction 
in solution is initially determined by the rate of diffusion of the reacting species. After D and A have 

arrived at the critical reaction distance r* (comparable tor, the edge-to-edge distance), the rate constant 
for electron transfer is a function of two factors. See Sections 24.11 (a) and (b) and eqn 24.81. The first 

is the tunneling rate of the electron through an energy barrier that is a function of the ionization energies 
of the complexes DA and D+ A-. The second is the Gibbs energy of activation. 

Effective transfer can occur only when the electronic energies in the two complexes match. The electronic 
energies are a function of the internuclear separations in DA and D+ A- as illustrated in Figures 24.27 

and 24.28; therefore, the distance between D and A plays a critical role in determining the rate of electron 

transfer. The tunneling rate is determined by the matrix element of the coupling term in the Hamiltonian 

which exhibits an exponential dependence on the negative of r, as given by eqn 24.80. 

Further Information 24.1 shows how the Gibbs energy of activation is related to the reorganization 

energy associated with molecular rearrangements which include the relative reorientation of the D and 

A molecules and the relative reorientation of the solvent molecules surrounding DA. 

Solutions to exercises 

E24.1 (b) The collision frequency is 

2112a (c)p 
z = kT where a = JTd2 = 4JT r 2 and 

21/2p 2 (8RT)I/2 
so z: = --(4JTr) --

kT rrM 

16pNM'rrl/2 

(RTM)I/2 

(
8RT) 

112 
(c)=-

rrM 

16 X (100 X 103 Pa) X (6.022 X 1023 mol-1) X (180 X w- 12 m)2 X (rr) 112 

[(8.3145JK- 1mol 1) x (298K) x (28.01 X I0-3kgmol 1)]1/2 

= 16.64 x 109 s- 1 I 
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The collision density is 

1 zp (6.64 x 109 s- 1) x (100 x 103 Pa) 1 1 
ZAA- -zNJV--- = 8.07 x 1034 m-3s- 1 

- 2 - 2kT- 2(1.381 X 10 2lJK 1) X (298K) · · 

Raising the temperature at constant volume means raising the pressure in proportion to the temperature 

so the percent increase in z and ZAA due to a 10 K increase in temperature is lt.6 percent ~ same as 
Exercise 24.l(a). 

E24.2(b) The appropriate fraction is given by 

(-£,) f = exp RT 

The values in question are 

(a) (i) = ex = .4 x I -
( 

-15xl0
3

Jmol-
1 

) 12 o'l 
f p (8.3145JK 1mol 1)x(300K) 

( 
-15xl03Jmol- 1 ) @JQl 

(ii) f = exp (8.3145JK- 1 mol 1) X (800K) = O.lO 

(b) (i) =ex = 7.7 x 1 -
( 

-150xl03Jmol-l ) I o271 
f p (8.3145JK 1 mol 1) x (300K) 

.. ( -150xl0
3

Jmol-
1 

) 1 16 10_ 10 1 

(n) f=exp (8.3145JK- 1mol- 1)x(800K) = . x 

E24.3(b) A straightforward approach would be to compute f = exp ( -E,JRT) at the new temperature and 
compare it to that at the old temperature. An approximate approach would be to note that/ changes from 

fo = exp (-EafRT) tof = exp ( -E,jRT(l + x)), where xis the fractional increase in the temperature. 
If xis small, the exponent changes from -E,jRT to approximately ( -E,jRT)(l - x) and/ changes 
from exp ( -E,JRT) to exp ( -£,(1 - x)jRT) = exp ( -E,jRT) [ exp ( -E,jRT) rx = fof0-x. Thus the 
new Boltzmann factor is the old one times a factor of fo-x. The factor of increase is 

(a) (i) fo-x= (2.4 X lQ-3)-10[300 = [!] 
(ii) fo-x= (0.10)-10[800 = ~ 

(b) (i) fo-x= (7.7 X lQ-27)-10/300 = [8::1 
(ii) fo-x= (1.6 X lQ-10)-10/800 = ITll 

E24.4(b) The reaction rate is given by 
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so, in the absence of any estimate of the reaction probability P, the rate constant is 

(
SkBT)

112 
k=a "I' NAexp(-E,jRT) 

9 2 ( 8(1.381 x I0-23 JK- 1) X (450K) )'
12 

= [0.30 X (10- m) ] X 
rr(3.930u) x (1.66 x w-"kgu 1) 

, ( -200xi01 Jmol- 1 ) 
x (6.022 x w-3 mol- 1) exp 

(8.3145JK 1 mol 1) x (450K) 

= 1.71 X w- 15 m3 mol-ls-] = 11.7 X 1012 dm3 mol-l ,-I I 

E24.5(b) The rate constant is 

where D is the sum of two diffusion constants. So 

kd = 4rr(0.50 X 10-9 m) X (2 X 4.2 X 10-9 m2 S-l) X (6.022 X 1023 mol-l) 

= ]3.2 x 107 m3 mol- 1 s- 1 I 

In more common units, this is 

E24.6(b) (a) A diffusion-controlled rate constant in decylbenzene is 

k 
_ 8RT _ 8 x (8.3145JK- 1 mol- 1) x (298K) -I 

97 10
6 3 -1 -II 

d- - - I. x m mol s 
3q 3 X (3.36 X IQ-3 kgm I s-1) 

(b) In concentrated sulfuric acid 

8RT 8x(8.3145JK- 1mol- 1)x(298K) 1
24 0

, 1 _,-II 
kd = -- = = . x I m mol s 

3ry 3 X (27 X I0-3 kgm I s-1) 

E24.7(b) The diffusion-controlled rate constant is 

8RT 8x(8.3145JK- 1mol- 1)x(298K) 1 1 
kd = -- = = 1.10 x 107 m3 mol-l ,-I 

3q 3 X (0.601 X 10 3kgm IS I) 

Inmorecommonunits,kd =ll.IOx I0 10 dm3moi- 1s- 1
1 

The recombination reaction has a rate of 

with [A] = [B] 

so the half-life is given by 

''I'= _I_ = ' I = ls.os x Io-s s I 
k[A]o (1.10 X I010ctm3mol s- 1) X (1.8 X w-3 moldm-3) 
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E24.8{b) The reactive cross-section a* is related to the collision cross-section a by 

a* =Per so P =a* fa. 

The collision cross-section a is related to effective molecular diameters by 

a= rrd2 so d = (a/rr) 1i 2 

2 [I ]
2 

I ( 1/2 1/2)
2 

Now aAB = rrdAB = rr 2 (dA + ds) = 4 aAA + a 88 

so 
a' 

p = --------, 
l ( 1/2 + 1/2)

2 
4 aAA aBB 

8.7 X 10-22 m 
= = l1.41 x w-3

1 
!l«0.88) 1/2 + (0.40) 1/2) x IQ-9 m]2 

E24.9(b) The diffusion-controlled rate constant is 

In more common units, kd = 5.12 x 109 dm3 mol-l s- 1• 

The recombination reaction has a rate of 

v = kd[A][B] = (5.12 x 109 dm3 mol-
1 
s- 1) x (0.200 mol dm-3) x (0.150 mol dm-3) 

=11.54 x!08 moldm-3 s- 1 J 

E24.10(b) The enthalpy of activation for a reaction in solution is 

t;!H = E,- RT = (8.3145J K-l mol-l) x (6134 K)- (8.3145 J K-l mol-l) x (298 K) 

=4.852 X 104 JmoJ-I =148.52kJmoJ-II 

The entropy of activation is 

( 
A ) kRT

2 
tl 1 S = R In B - I where B = hp"' 

(1.381 x 10-23 JK- 1) X (8.3145JK-I mol- 1) X (298K)2 

B = =:..::..c...:..:....:_('::6-:.6c:::2';-6 :.::x"""'I:00-,;34C,J:Cs:_) :_x.:_(:71 "'.o""o-x.:::.;-:1 Oec5-;;P'-a):-'.::.:..c:_:.::c_ 

= 1.54 x 10 11 m3mol- 1 s- 1 

( 

8.72 x 1012 dm3 mol-l ,-1 ) 
sot>*S=(8.3145JK- 1moi- 1)x In 3 -1 

(1000dm3 m ) x (1.54 x 10 11 m3moi- 1s-l) 

= J-32.2J K- 1 moi- 1 J 

COMMENT. In this connection, the enthalpy of activation is often referred to as "energy" of activation. 
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E24.11(b) The Gibbs energy of activation is related to the rate constant by 

kRT2 

where B = hpa. so t k2 t;. G=-RTin
B 

k2 = (6.45 x 1013 dm3 mol-l ,-I )e-IC5375 K)/(298 K)l = 9.47 x 105 ctm3 mol-l ,-I 

=947m3 mol- 1 ,-I 

Using the value of B computed in Exercise 27 .l3(b), we obtain 

( 
947m3moi- 1s- 1 ) 

t;.*G = -(8.3145 X 10-3 kJ K-l moi- 1) x (298 K) X In 1 1.54 X JOII m3 mol s-1 

= 146.8 kJ mol-1 I 
E24.12(b) The entropy of activation for a bimolecular reaction in the gas phase is 

kRT2 

where B = -,.
lip 

( 1.381 x 10-23 ] K- 1) x (8.3145] K- 1 mol-l) X [(55+ 273) K]2 

B = ='--'-''------'-----,( 67-_-:':620:6:-x'--;-1.,:.0 .:c3;',4 ':-J '-':, )-'x-":-(1:--. O"'O,.c-x --:I-0:05"'P00a'O)--'-----''--"'--

= 1.86 x 10 11 m3 moi- 1 ,-I 

The rate constant is 

so A= k2exp (:~) 

3 ( 49.6 x 103Jmol-
1 

) 
A= (0.23 m mol-',-') x exp (8.3145JK-1 mol 1) x (328K) 

= 1.8 x 107 m3 mol- 1 ,-I 

( ( 
1.8 x 107m' moi- 1 ,- 1 ) ) 

anctt;.IS=(8.3145JK- 1mol- 1)x In 
3 1 -2 

1.86 x 10" m mol ,-I 

E24.13(b) The entropy of activation for a bimolecular reaction in the gas phase is 

kRT2 

where B = -,.
lip 

For the collision of structureless particles, the rate constant is 

(
8kT)'i

2 
(-t;.£0) 

k2=NA "~'- aexp ~ 
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so the prefactor is 

(
8kT) 

1
1
2 

( RT) 
1
1
2 

A= NA - a = 4NA - a 
rr;t rrM 

where we have used the fact that J..L = ~m for identical particles and k/m = R/M. So 

( )

IP 
(8.3145JK- 1 mo!- 1) x (500K) 

A= 4 X (6.022 X 1023 mol-l) X I X (0.68 X 10-IS m2) 
rr x (78 x 10-3 kg mol ) 

(1.381 x 10-23 JK- 1) x (8.3!45JK-l mo!- 1) X (500K)2 

B = -'----(-:-:6:-.6:-::2--:6-x-:-'I0,.---,34-:C-J:-s-:-)-x-(-:-:l--:.0:-::0-x---:-l 0"5"'Pc...a.,..) -'---'-

= 4.33 x 10 11 m3 mo!- 1 ,- 1 

( ( 
2.13 x !08 m3 mo!- 1 s- 1

) ) 
andll*S= (8.3!45JK-l mol- 1) x In II 3 1 1 

-2 
4.33 x 10 m mol s-

=I-80.0JK- 1 mo!- 1 1 

E24.14(b) (a) The entropy of activation for a unimolecular gas-phase reaction is 

ll *s = R (In~ - I) where B = !.54 x 10 11 m3 mol- 1 s- 1 [See Exercise 24.14(a)] 

soll*S = (8.3!45JK- 1 mo!- 1) 

( ( 
2.3 x 1013 dm3 mo!- 1 

,-1 ) ) 
x In -(l--:0-0-:-0-d-m'3_m __ --:3:-)-x-(l-.5c:-4-x-l-::0-;-1 '1 m-:;-3 -m-oc:-1 ' 1's---,-1) - 1 

=I-24.1JK- 1 mo!- 1 1 

(b) The enthalpy of activation is 

ll;H = E,- RT = 30.0 x 103 Jmo!- 1 - (8.3!45JK-l mo!- 1) x (298K) 

= 27.5 x 103 J mol-l = 127.5 kJ mol- 1 I 

(c) The Gibbs energy of activation is 

"'*c = ll *H - T ll l s = 27.5 kJ mo!- 1 - (298 K) x ( -24.1 x 10-3 kJ K- 1 mo!- 1) 

= 134.7kJmo!- 1 I 

E24.15(b) The dependence of a rate constant on ionic strength is given by 
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At infinite dilution, I = 0 and k2 = k2, so we must find 

logk;' = logk2 - 2AzAzsf 112 = log(1.55)- 2 X (0.509) x (+I) x (+I) X (0.0241) 112 

= 0.0323 and I k;' = 1.08dm6 mol-2min- 1 I 

E24.16(b) Equation 24.84 holds for a donor-acceptor pair separated by a constant distance, assuming that the 
reorganization energy is constant: 

or equivalently 

if energies are expressed as molecular rather than molar quantities. Two sets of rate constants and 
reaction Gibbs energies can be used to generate two equations (eqn 24.84 applied to the two sets) in two 

unknowns: A and the constant. 

(t.,G"')2 t.,G"' (t.,G;')2 t.,Gf 
In kot, 1 + 4Ak~ + 

2
k; = constant = Ink"·' + 4AkT + -

2
-k-T-- , 

;. = ----~---'-(--,0_.6_6_5_eY_)c._2_-_(c._-_o_.9_75--,e_V.:..)' ______ = 11.531 eV j 

4(1.381 X 10 23 JK 1)(298K) 3.33 X 106 

1.602 x I0-19 J eY I In 2.02 X 105 - 2(0.975 - 0.665) eV 

If we knew the activation Gibbs energy, we could use eqn 24.81 to compute (HoA) from either rate 

constant, and we cw1 compute the activation Gibbs energy from eqn 24.82: 

t.'G= (t.,G
9

+!.)
2 

= [(-0.665+ 1.53l)eY]
2 

=O.I 22 eY. 
41. 4(1.531eY) 

2 (HoA)
2 

( rr
3 

) 
112 (-t.'c) 

Now k" = h 4!.kT exp --,;_y:-
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so (hk")l/2 (4J..kT)'/4 (c,lG) (HoA) = - -- exp --
2 rr 3 2kT ' 

(6.626 X w-34 J s)(2.02 X 105 s- 1) -

( )
'r 

(HoA) = 
2 

x ( 4( !.53 I eV)( 1.602 x 10- 19 J eV:: )( 1.38\ x 10-23 J K-1 )(298 K)) 
114 

(
(0.\22eV)(\.602 X I0- 19 Jev-')) I -'4 I 

X exp 2(1.381 x 10 23JK 1)(298K) = 9 ·39 
X IO- J 

E24.17(b) Equation 24.83 applies. In Exercise 24.17(a), we found the parameter f3 to equal 12 nm- 1, so: 

lnkc1/s-l = -{Jr +constant so constant= lnkc1/s- 1 + {Jr, 

and constant= In 2.02 x 105 + (12 nm- 1 )(!.II nm) = 25. 

Taking the exponential of eqn 24.83 yields: 

kct = e-.BI'+constanl s-1 = e-(12/nm)(l.48nm)+25 s-l = 11.4 X 103 s-1 I. 

Solutions to problems 

Solutions to numerical problems 

P24.2 Draw up the following table as the basis of an Arrhenius plot 

T/K 600 700 

103 KjT 1.67 1.43 
kf(cm 3 mol- 1 s- 1) 4.6 X 102 9.7 X 103 

ln(kjcm 3 moi- 1 s- 1) 6.13 9.\8 

The points are plotted in Figure 24.1. 
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The least-squares intercept is at 28.3, which implies that 

(
8kT) 

1
/
2 

FromA=NAu• "IL [Exercise24.13(a)] 

* Acxptl 
a = ? 

NA(8kT/rrJL) 11-

I 
with JL = zm(NO,) 

(
A"P'I)(""')I/2 ( 2.0x10

6
m

3
mol-

1
s-

1
) 

= 4NA kT = (4) X (6.022 X 1023 mol I) 

X ((rr) X (46u) X (1.6605 X 10-27 kgu-I))I/Z 
( 1.381 x I 0 23] K I) x (750 K) 

= 4.0 X l0-2l m2 Of 14.0 X IQ-) nm2 1 

G* 4.0 X J0-3 nm2 ~ 
P=-= =~ 

a 0.60nm2 

P24.4 Draw up the following table for an Arrhenius Plot 

ere -24.82 

TjK 248.33 
103 j(T jK) 4.027 
ln(k/s- 1) -9.01 

The points are plotted in Figure 24.2. 
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103 /(T/K) Figure 24.2 

-17.02 -13.00 -8.95 

256.13 260.15 264.20 
3.904 3.844 3.785 
-7.73 -7.07 -6.55 

A least-squares fil of lhe data yields the intercept +32.6 at 1/T = 0 and slope -10.33 x 103 K. 
The former implies that In (A/s- 1) = 32.6, and hence lhat A = 1.4 x 1014 s- 1 The slope yields 

E,jR = 10.33 x 103 K, and hence E, = 185.9 kJ mol- 1 I 
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In solution t>*H =E.,- RT, so at -20°C 

t>*H = (85.9kJmoi- 1)- (8.314JK- 1 mol- 1) x (253K) 

= 183.8 kJ mol-' I 

We assume that the reaction is first-order for which, by analogy to Section 24.4 

• kT -! 
K'=K= -K 

hv 

• • kT _, 
and k1 = k+ K+ = v x - x KT 

hv 

with t>*G = -RT lnK1 

Therefore, k, =A e-EafRT = ¥,- e-!:J.*GfRT = '1, et::.'+
5 

JR e-ll*H/RT 

and hence we can identify 6.*S by writing 

and hence obtain 

t>*s=R[ln(:~) -1] 

=8.3!4JK mol x In -1 
_ 1 _ 1 [ ((6.626xi0-34Js)x(1.4xi0'4s-')) ] 

( 1.381 X [Q-23 J K I) X (253 K) 

=1+19.1JK- 1 mol- 1 1 

Therefore, D. 'G = D.; H- T D.; S = 83.8 kJ mol- 1 - 253 K x 19.1 J K- 1 mol-' 

=I +79.0kJmo!- 1 1 

Figure 24.3 shows that log k is proportional to the ionic strength for neutral molecules. 
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From the graph, the intercept at I = 0 is -0.182, so 

COMMENT. In comparison to the effect of ionic strength on reactions in which two or more reactants are 

ions, the effect when only one is an ion is slight, in rough qualitative agreement with eqn 24.69. 

P24.8 Both approaches involve plots of log k versus logy, where y is the activity coefficient. The limiting law 
has logy proportional to ! 112 (where I is ionic strength), so a plot of logk versus J112 should give a 

straight line whose y-intercept is log k0 and whose slope is 2AZAZB, where ZA and zs are charges involved 
in the activated complex. The extended Debye-Htickellaw has logy proportional to [1 112 /(I + BJ 112)]. 

so it requires plotting log k versus [I 112 I (1 + Bl 112) ]. and it also has a slope of2AzA zs and a y-intercept 
of log k0

• The ionic strength in a 2: I electrolyte solution is three times the molar concentration. The 

transformed data and plot (Figure 24.4) follow 

[NazSO,] /(mol kg- 1) 

k j(dm312 mol-'s- 1) 

jl/2 

Jl/2(1 + BJII2) 

logk 

-0.30 

.,., 

.£ -0.50 

-0.70 
0.0 0.2 

0.2 0.15 0.1 

0.462 0.430 0.390 

0.775 0.671 0.548 

0.436 0.401 0.354 
-0.335 -0.367 -0.409 

.. ~· ....... ·: . .. ......... 

0.4 

Jill 
or-

l+B/112 

0.6 0.8 

0.05 
0.321 

0.387 
0.279 

-0.493 

• /1/1 
[Ill 

0 I+Bfl/1 

0.025 
0.283 

0.274 
0.215 

-0.548 

Figure 24.4 

0.0125 0.005 

0.252 0.224 

0.194 0.122 

0.162 0.109 

-0.599 -0.650 

The line based on the limiting law appears curved. The zero-ionic-strength rate constant based on it is 

The slope is positive, so the complex must overcome repulsive interactions. The product of charges, 

hoWever, works out to be 0.5, not easily interpretable in terms of charge numbers. The line based on 
the extended law appears straighter and has a better correlation coefficient. The zero-ionic-strength rate 

constant based on it is 
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The product of charges works out to be 0.9, nearly I, interpretable in terms of 

a complex of two univalent ions of the same sign 

• ( [ A ] ) C!.'S = R In (kT/11) x (RT(p 0 ) + 2 [24.63] 

= -(8.3145JK- 1mol- 1) 

[ [ 

4.07 x 105 M-1 s- 1 (m3(103 
dm

3
) ] ] 

X In -(-1.3'"'8-1 x-1-0~'""' J-K--c'-)x-(3_00_K""l''-x-,(8-'-.3-14-:-5-:-J K.,---,1-'m-ol,.--;-1) + 2 

(6.626x 10 34 J s)x(1.013x J05 Pa) 

= (8.3145JK- 1mol- 1) X [ln(2.631 x 10-9)+2] 

!:!. ;H = E, - 2RT = 65.43 kJ mol-l - 2 x (8.3145 J K- 1 mol-l) x (300 K) 

X 
(

I0-
1

3 kJ) [24.60. 24.61] 

!:!.1U = t;!H- t;.l(pV) = !:!.1H- t!.vRT 

(
I0-

3
kJ) = (60.44kJmol- 1)- (-1) x (8.3145JK-l mol- 1) X (300K) X -

1
-

1 t;lU = 62.9 kJ mol-l I 

I !:!.1G= 104.8kJmol- 1 1 

Estimate the bimolecular rate constant k12 for the reaction 

by using the approximate Macrus cross-relation: 
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The standard cell potential for the reaction is: 

The equilibrium constant is: 

_ (vFE") _ ((1)(96485Cmol- 1 s- 1)(0.49V)) _ 8 K- exp -- - exp - 1.9 x 10 
RT (8.31451 mol 1 K 1)(298K) 

The rate constant is approximately: 

k12"" [(4.0 x 108 dm3 mol-l s- 1)(4.2dm3 mol-'s- 1)(1.9 x 108)] 112, 

k12 ""15.6 x 108 dm3 mol-'s-'l 

Solutions to theoretical problems 

Programs for numerical integration using, for example, Simpson's rule are readily available for personal 
computers and hand-held calculators. Simplify the form of eqn 24.40 by writing 

(A) (rrD) l/2 
T = kt, j = no k [J]* 

Then evaluate 

for various values of k. 

[W][A -] 2 [W][A -]Yf 
K, = [HA]YHA Y± "" [HA] 

[HA]K, 
Therefore, [H+] = ---

2 [A-]y± 

and log[H+] = log K, + log ~ - 2log Y± = log K, + log ~ + 2Af1/2 

Write v = k2[H+][B] 

then 

log v = log(k2[B] + log[H+] 

= log(k2[B]) +log [HA] + ZA£ 112 + logK, 
[A-] 

=log v' + ZA£ 112, v' = k2 [B][HA]K, 
[A ] 

That is, the logarithm of the rate should depend linearly on the square root of the ionic strength, 

llogv ex £'121 
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kT ql 
k1 =- x -e-~~£ [Problem 24.17] 

h q 

ql = q;v q~v q~ "' (:~ y qR 

1.027 (T /K)312 
qR "' -- x 1 312 

[Table 20.4,A = B = C] "'80 
a (Bjcm ) 

Therefore, k1 "'80 x 5,e-PUo "'80 x 5.4 x 104 s- 1 [Problem 24.15] = 4 x 106 s-1 

Consequently, D "' (80) X (2.7 X w- 15 m2 s- 1) = 12 X w- 13 m2 s- 1 1 if vi 

)9 X 10-IJmZs-l)ifvt = !v. 

It follows that, since ~ and l are the same for the two experiments, 

a(CH,F,) In 0.6 iZ1 
_:._..,..,=.,.::.:. = -- [Problem 24.17] = I2.J 

a(Ar) ln0.9 

lJ and 

CH2F2 is a polar molecule; Ar is not. CsCI is a polar ion pair and is scattered more strongly by the polar 

CH,F,. 

We use the Eyring equation (combining eqns 24.53 and 24.51) to compute the bimolecular rate constant 

We are to consider a variety of activated complexes, but the reactants, (H and Dz) and their partition 
functions do not change. Consider them first. The partition function of His solely translational: 

G RT ( h' ) 1/2 
q = --- and AH = 

H p 9 Af,
2 

2rrKTmH 

We have neglected the spin degeneracy of H, which will cancel with the spin degeneracy of the activated 

complex. The partition function of D2 has a rotational term as well. 

We have neglected the vibrational partition function ofDz, which is very close to unity at the temperature 
in question. The symmetry number cr is 2 for a homonuclear diatomic, and the rotational constant is 
30.44 em -l. Now, the partition function of the activated complex will have a translational piece that is 

the same regardless of the model: 
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Let us aggregate the model-independent factors into a single term, F where: 

, ( 53 
) 

112 (-!>.Eo) F = h cBo, ex -- = 2.71 
· 2m~(4)'rr'T'ks p RT 

where we have taken mHo2 = 5mH and mv2 = 4mH. 

Now K2 = Fxqct,rot xCfct,vib· The number of vibrational modes in the activated complex. is 3 x 3-6 = 3 
for a nonlinear complex, one more for a linear complex; however, in either case, one mode is the reaction 

coordinate, and is removed from the partition function. Therefore, assuming all real vibrations to have 
the same wavenumber ii 

Cict = q~odc (nonlinear) or q~1ode (linear) 

where 

[ (-hcv)J-' qmodo = I - exp """""kT" = 1.028 

if the vibrational wavenumbers are 1000 em -I. The rotational partition function is 

kT I (KT)3i 2
( rr )1/2 qct rot = --(linear) or - - -- (nonlinear) 

· a hcB a he ABC 

where the rotational constants are related to moments of inertia by 

It 
B = -- where I = L mr2 

4rrc/ 
and r is the distance from an atom to a rotational axis. 

(a) The first model for the activated complex is triangular, with two equal sides of 

s = 1.30(74 pm) = 96 pm 

and a base of 

b = 1.20(74 pm) = 89 pm 

The moment of inertia about the axis of the altitude of the triangle (z-ax.is) is 

= 21.2cm- 1 

To find the other moments of inertia, we need to find the center of mass. Clearly it is in the plane of 
the molecule and on the z-axis; the center of mass is the position z at which 

z=m,(z;- z) = 0 = 2(2mH)(O- z) + mH(H- z) 
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where H is the height of the triangle, 

H = [s2
- (b/2)21112 = 85 pm 

so the center of mass is 

z = H/5 

The moment of inertia about the axis in the plane of the triangle perpendicular to the altitude is 

fj 
so B = = 28.3 cm~ 1 

4rrc(4mH/5)H2 
The distance from the center of mass to the D atoms is 

rv = [(H/5)2 + (b/2)21112 = 48pm 

and the moment of inertia about the axis perpendicular to the plane of the triangle is 

l3 = 2(2mH)ri', + 111H(4H /5)2 = 2(2mH)[(H /5)2 + (b/2)21 + 111H(4H /5)2 

l3 = (4mH/5)(s2 + b2) 

fj 
so C = = 12.2 cm- 1. The rotational partition function is: 

4rrc(4mH/5)(s2 + b2) 

I (kT)312 
rr 1/2 

qc>mt = ~ - (-) =47.7 
· s he ABC 

(The symmetry number a is 2 for this model.) The vibrational partition function is 

So the rate constant is: 

complex (a) 
A 

complex (b) 

H 

D D 

89pm 

B 

D 89 pm D 
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(b) To compute the moment of inertia, we need the center of mass. Let the terminal D atom be at x = 0, 

the central D atom at x = b, and the H atom at x = b + s. The center of mass is the position X at 
which 

L m;(x;- X)= 0 = 2mH(O- X)+ 2mH(b- X)+ mH(s + b- X) 

5X=3b+s so x=(3b+s)f5 

The moment of inertia is 

= 3.97 x 10-47 m kg2 

h 
and B = -- = 7.06 em -I. The rotational partition function is 

4rrcl 

kT 
qc-t.rot = ahcB = 39.4 

(The symmetry number a is I for this model.) The vibrational partition function is 

So the rate constant is 

(c) Both models are already pretty good, coming within a factor of 3 to 4 of the experimental result, 

and neither model has much room for improvement. Consider how to try to change either model 
to reduce the rate constant toward the experimental value. The factor F is model-independent. The 

factor lJc+.vib is nearly at its minimum possible value, I, so stiffening the vibrational modes will 
have almost no effect. Only the factor qc:~= .rot is amenable to lowering, and even that not by much. h 
would be decreased if the rotational constants were increased, which means decreasing the moments 

of inertia and the bond lengths. Reducing the lengths sand bin the models to the equilibrium bond 
length ofH2 would only drop k2 to 6.5 x 105 (model a) or6.9 x 105 (model b) dm3 mol- 1 s- 1, even 

with a stiffening of vibrations. Reducing the HD distance in model a to 80% of the H2 bond length 
does produce a rate constant of 4.2 x 105 dm3 mol- 1 s- 1 (assuming stiff vibrations of 2000 cm- 1 ); 

such a model is not intermediate in structure between reactants and products, though. It appears that 
the rate constant is rather insensitive to the geometry of the complex. 

Solutions to applications 

(a) The rate constant of a diffusion-limited reaction is 

8RT 8 x (8.3145JK- 1 mol-l x (298K) x (I03 dm3 m-3) 

k = -3-ry = -'---'-------;;3-x---;:(1--;.0;-:;6,---x--,l"'0,.-';-3 c,-kg'----m'---,1-'s ' 1.,-) -----'-

= 16.23 x 109 dm3 mol- 1 s- 1 I 
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(b) The rate consLant is related to the diffusion constants and reaction distance by 

k = 4lfR'DNA so R' = __ k_ 
4lfDNA 

(2.77 X 109 dm3 mol-l S-l) X (10-J m-3 dm-3) 

4lf X (I X 10-9 m2 s- 1) X (6.022 X 1023 mol 1) 

R' = /3.7 x 10- 10 m or 0.37 nm I 

For a series of reactions with a fixed edge-to-edge distance and reorganization energy, the log of 
the rate constant depends quadratically on the reaction free-energy; eqn 24.84 applies: In kct = 

-((t.,G 9
)
2 /4AkT)- (t.,G 9 /2kT) + constant, 

where we have replaced RT by kT since the energies are given in molecular rather than molar units. 

Draw up the following table: 

t.,G"' /eV K"/(106 s- 1) lnKctfs- 1 

-0.665 0.657 13.4 
-0.705 1.52 14.2 
-0.745 1.12 13.9 
-0.975 8.99 16.0 

-1.015 5.76 15.6 
-1.055 10.1 16.1 

and plot lnkct vs. 6.rG 6 (see Figure 24.5) 

17 

16 1---t 
1'----

'""--
"-._ 

' 
", 15 
~ 

-= 
14 ""'-' 

"" 13 
-I. I -1.0 -0.9 -0.8 -0.7 

The least squares quadratic fit equation is: 

.. 
" -0.6 

Figure 24.5 
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The coefficient of the quadratic term is: 

8.48 
= 4Akt - ev2 ' 

so 
(eV)2 (1.602 x 10- 19 J eV-1)(eV)2 

A = = --'------::::--'-i--'--
4(8.48) kT 2(8.48) ( 1.381 x lQ-23 J K 1 )(298 K)' 

I A= 2.30eV I 
As a check on the reliablilty of the fit, note that according to eqn 24.84, the coefficient of the linear 

term is: 

I 21.1 
= 2kT - eV' 

eV (1.602xl0- 19 JeV- 1)eV ~ 
soT= = =~ 

2k(21.1) 2( 1.381 x [Q-23 J K 1 )(21.1) ' 

which differs by about 8% from the stated temperature of 298 K. 

The theoretical treatment of section 24.11 applies only at relatively high temperatures. At temperatures 
above 130 K, the reaction in question is observed to follow a temperature dependence consistent with 

eqn 24.81, namely increasing rate with increasing temperature. Below 130 K, the temperature dependent 

terms in eqn 24.81 are replaced by Frank-Condon factors; that is, temperature-dependent tenns are 
replaced by temperature-independent wavefunction overlap integrals. 
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25 Processes at solid 
surfaces 

025.2 

025.4 

Answers to discussion questions 

(a) AES can provide a depth profile or fingerprint of the sample, since the Auger spectrum is character

istic of the material present. Information about the atoms present and their bonding can be obtained. 

The technique is limited to a depth of about I 00 nm. 

EELS and HREELS can detect very tiny amounts of adsorbate. The incident beam can induce 

vibrational excitations in the absorbate that is characteristic of the species and its environment. 

RAIRS resolves the problem of the opacity of surfaces to infrared or visible radiation but the spectral 

bands observed are typically very weak. 

SERS resolves the problem of weak spectral observed in RAIRS. It generally gives a greatly enhanced 

resonance Raman intensity. The disadvantages are that it provides only a weak enhancement for Hat 

single crystal surfaces and the technique works well only for certain metals. 

SEXAFS can provide nearest neighbor distributions, giving the number and interatomic distances 

of surface atoms 

SHG provides information about adsorption and surface coverage and rapid surface changes. 

UPS can provide detailed information about the chemisorption process, surface composition, and 

the oxidation state of atoms. It can distinguish between chemical absorption and physical adsorption. 

XPS is similar to UPS in the information revealed. 

See the references listed under Further reading for more information about these modem techniques 

for probing the propenies of surfaces. 

(b) Consult the appropriate sections of the textbook (listed below) for the advantages and limitalions of 

each technique. 

AFM: 28.2(h) and Box 28.1; FIM: 25.5(b); LEED: 25.2(e); MBRS: 25.7(c); MBS: 25.2(f); SAM: 
25.2(c); SEM: 28.2(h); and STM: 25.5(b). 

( 
aoK ) 

Rcq = Rmax aoK + I 

Taking the inverse of the above equation and multiplication by ao gives: 

ao I ao -=--+-
Rcq RmaxK Rmax 

This working equation predicts that a plot of aof Rcq against ao should be linear if the model is applicable 

to the experimental data. The slope of a linear regression fit to the data gives the value of I J Rmax or 

Rmax =If slope. Likewise, the regression intercept equals 1/RmaxK or K =slope/intercept. 
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Heterogeneous catalysis on a solid surface requires the reacting molecules or fragments to encounter 

each other by adsorption on the surface. Therefore, the rate of the catalysed reaction is determined by 

the sticking probabilities of the species on the surface as described by Figure 25.28 of the text. 

(a) There are three models of the structure of the electrical double layer. The Helmholtz model, the 

Gouy-Chapman model, and the Stern model. We will describe the Stern model which is a com

bination of the first two and illustrates most of the structural features associated with the double 
layer. The electrode surface is a rigid plane of, say, excess positive charge. Next to it is a plane of 
negatively charged ions with their solvating molecules, called the outer Helmholtz layer. Adjoining 

this region is a diffuse layer with perhaps only a slight excess of negative charge. This region fades 
away into the bulk neutral solution. At another level of sophistication, an inner Helmholtz plane is 

added, see Section 25.8(a) for a brief description of this layer. 

(b) The electrical double layer is present near the electrode surface whether or not current is flowing in 

the cell. The Nernst diffusion layer is invoked to explain polarization effects near a working electrode 

and is a region of linear variation in concentration between the bulk solution and outer Helmholtz 
plane. It is typically 0.1-0.5 mm in thickness without stirring or convection, but can be reduced to 

0.00 l mm with such agitation The electrical double layer is unaffected by hydrodynamic flow and 
is typically about 1 nm in thickness. 

In cyclic voltammetry, the current at a working electrode is monitored as the applied potential difference 

is changed back and forth at a constant rate between pre-set limits (Figs 25.45 and 25.46). As the 
potential difference approaches Ee- (Ox, Red) for a solution that contains the reduced component (Red), 

current begins to flow as Red is oxidized. When the potential difference is swept beyond Ee- (Ox, Red), 

the current passes through a maximum and then falls as all the Red near the electrode is consumed 
and converted to Ox, the oxidized form. When the direction of the sweep is reversed and the potential 

difference passes through £ 9 (Ox, Red), current flows in the reverse direction. This current is caused by 
the reduction of the Ox formed near the electrode on the forward sweep. It passes through the maximum 

as Ox near the electrode is consumed. The forward and reverse current maxima bracket Ee- (Ox, Red), so 

the species present can be identified. Furthermore, the forward and reverse peak currents are proportional 
to the concentration of the couple in the solution, and vary with the sweep rate. If the electron transfer 

at the electrode is rapid, so that the ratio of the concentrations of Ox and Red at the electrode surface 
have their equilibrium values for the applied potential (that is, their relative concentrations are given 

by the Nernst equation), the voltammetry is said to be reversible. In this case, the peak separation is 

independent of the sweep rate and equal to (59mV)/n at room temperature, where 11 is the number of 
electrons transferred. If the rate of electron transfer is low, the voltammetry is said to be irreversible. Now, 

the peak separation is greater than (59 m V) /II and increases with increasing sweep rate. If homogeneous 

chemical reactions accompany the oxidation or reduction of the couple at the electrode, the shape of the 
voltammogram changes, and the observed changes give valuable information about the kinetics of the 

reactions as well as the identities of the species present. 

Corrosion is an electrochemical process. We will illustrate it with the example of the rusting of iron, 

but the same principles apply to other corrosive processes. The electrochemical basis of corrosion that 
occurs in the presence of water and oxygen, is revealed by comparing the standard potentials of the 

metal reduction, such as 

£ 0 = -0.44V 

with the values for one of the following half-reactions 
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In acidic solution 

In basic solution: 

(c) 2Hz 0(1) + Oz(g) + 4e--> 40W(aq) 

Because all three redox couples have standard potentials more positive than E'\Fe2+ jFe), all three can 
drive the oxidation of iron to iron(Il). The electrode potentials we have quoted are standard values, and 

they change with the pH of the medium. For the first two 

E(a) = £ 6 (a) + (RT I F) In a(H+) = -(0.059 V) pH 

E(b) = £ 6 (b) + (RT I F) In a(H+) = 1.23 V - (0.059 V) pH 

These expressions let us judge at what pH the iron will have a tendency to oxidize (see Chapter 7). 
A thermodynamic discussion of corrosion, however, only indicates whether a tendency to corrode 

exists. If there is a thermodynamic tendency, we must examine the kinetics of the processes involved 

to see whether the process occurs at a significant rate. The effect of the exchange current density on 
the corrosion rate can be seen by considering the specific case of iron in contact with acidified water. 

Thermodynamically, either the hydrogen or oxygen reduction reaction (a) or (b) is effective. However, 
the exchange current density of reaction (b) on iron is only about w- 14 Acm-2 , whereas for (a) it is 

w-6 Acm-2 . The latter therefore dominates kinetically, and iron corrodes by hydrogen evolution in 

acidic solution. For corrosion reactions with similar exchange current densities, eqn 25.66 predicts that 
the rate of corrosion is high when E is large. That is, rapid corrosion can be expected when the oxidizing 

and reducing couples have widely differing electrode potentials. 

Several techniques for inhibiting corrosion are available. First, from eqn 25.66 we see that the rate of 

corrosion depends on the surfaces exposed: if either A or A' is zero, then the corrosion current is zero. 

This interpretation points to a trivial, yet often effective, method of slowing corrosion: cover the surface 
with some impermeable layer, such as paint, which prevents access of damp air. Paint also increases the 

effective solution resistance between the cathode and anode patches on the surface. 

Another form of surface coating is provided by galvanizing, the coating of an iron object with zinc. 
Because the latter's standard potential is -0.76 V, which is more negative than that of the iron couple, 

the corrosion of zinc is thermodynamically favored and the iron survives (the zinc survives because it is 

protected by a hydrated oxide layer). 

Another method of protection is to change the electric potential of the object by pumping in electrons 
that can be used to satisfy the demands of the oxygen reduction without involving the oxidation of the 

metal. In cathodic protection, the object is connected to a metal with a more negative standard potential 
(such as magnesium, -2.36 V). The magnesium acts as a sacrificial anode, supplying its own electrons 

to the iron and becoming oxidized lo Mg2+ in the process. 

Solutions to exercises 

E25.1(b) The number of collisions of gas molecules per unit surface area is 

NAP 
Zw - c::--:--:=::o, 

- (2rrMRT)'I' 
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(a) For N2 
(6.022 x 1023 mol- 1) x (IO.OPa) 

(i) Zw = --::----,::c----,:.:.;:=_:_:c.:.,...::::::,-,-'---::-':':.:._:.,C.:::.-,--,.--------= 
(2rr X (28.013 X I0-3 kgmo) 1) x (8.3145JK I mol 1) X (298K))If2 

=2.88 x 1023 m-2s- 1 

= 12.88 x 10 19 cm-2 s- 1 I 
(ii) Zw = (6.022 X 1023 mol- 1

) X (0.150 X I0-6 Torr) x (1.01 x 105 Paj760Torr) 

(2rr X (28.013 X I0-3kgmol 1) X (8.3145J K-l mol 1) x (298K))I/2 

= 5.75 x 1017 m-2 s- 1 

= 15.75 x 1013 cm-2 s- 1 I 

(b) For methane 
(6.022 x 1023 moi- 1) X (10.0Pa) 

(i) Zw = .,--...,.,-,,-:--_:_:::,;.:.:::::...:__:_;.,-__:__:_:'-::-:..:.C.C:,.:C"'-'-:----,-----,-,-----;-;;:: 
(21f X (16.04 x 10-3 kg mol 1) x (8.3145J K 1 mol 1) X (298K))I/2 

=3.81 x 1023 m-2 s- 1 

= 13.81 x 1019 cm-2 s- 1 I 
(ii) Zw = (6.022 x 1023 mol- 1

) X (0.150 x I0-6 Torr) x (1.01 x 105 Paj760Torr) 

(2rr X (16.04 X 10-Jkgmol 1) X (8.3145J K-l mol 1) X (298K))I/2 

=7.60 x 1017 m-2s- 1 

= 17.60 x 1013 cm-2 s-1 I 
E25.2(b) The number of collisions of gas molecules per unit surface area is 

NAP 
Zw - :::;----;-0=:-;-;;- (2rrMRT)I/2 

ZwA(2rrMRT) 112 
so p = 

(5.00 x 10 19 s- 1) 
p = ------=--"'-'c"---------'-----'------:---c

(6.022 X 1023 mol-l) X 1f X (1(2 X 2.0 X lQ-3 m)2 

X (2rr X (28.013 X 10-3kgmol-l) X (8.3145Jmol-l K- 1) X (525K)) 1i 2 

=17.3 xl02Pal 

E25.3(b) The number of collisions of gas molecules per unit surface area is 

NAP 
Zw - -,.,----,-,=""'="' - (2rrM RT)lf2 

so the rate of collision per Fe atom will be ZwA where A is the area per Fe atom. The exposed surface 

consists of faces of the bee unit cell, with one atom per face. So the area per Fe is 

A=c2 and rate= ZwA = (2rrM RT)l/2 
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where c is the length of the unit cell. So 

rate 
(6.022 X 1023 moJ- 1) X (24Pa) X (145 X 10- 12 m)2 

=----~----~----T-~~~~---.--~--~ 
(2rr x (4.003 X 10-3 kgmol 1) x (8.3145JK-I mol 1) X (100K)) 112 

= 16.6 X 104 s-' I 

E25.4(b) The number of CO molecules adsorbed on the catalyst is 

pVNA 
N=nNA = -

RT 
(1.00atm) X (4.25 X 10-3 dm3) X (6.022 X 1023 mol- 1) 

(0.08206 dm3 atm K 1 mol 1) x (273 K) 

= 1.14 X 1020 

The area of the surface must be the same as that of the molecules spread into a monolayer, namely, the 
number of molecules times each one's effective area 

E25.5(b) If the adsorption follows the Langmuir isotherm, then 

B = __!!!_ 
I+ Kp 

Setting this expression at one pressure equal to that at another pressure allows solution for V mon 

= 
VzfVmoo Pt <Vmoo- Vt) p,(Vmoo- V,) 

so = 
pz(l - V,fVmool Vt Vz 

V _ p 1 - P2 = (52.4- 104) kPa = 19_7 em' I 
moo - PtfVt - P2/V2 (52.4/1.60- 104/2.73) kPa em 3 · 

E25.6(b) The mean lifetime of a chemisorbed molecule is comparable to its half-life: 

t = r ex - "' 10- s ex = 200 s (
Ed) 14 ( 155 x 10

3 
Jmol-l ) ~ 

'12 0 p RT ( ) p (8.3145JK-1mol 1)x(500K) 

E25.7(b) The desorption rate constant is related to the half-life by 

1 = (In 2)/kd so kd = (In 2)/1 

The desorption rate constant is related to its Arrhenius parameters by 

so 

(In kt -In k,)R 
and£d= 

1 1 T2 -T1 

Ed = 13.7 x 103 J moi- 1 I 

Ed 
lnkd =InA-

RT 

(In 1.35 -In I) x (8.3145JK- 1 mol- 1) 

(600K) 1 - (IOOOK) I 
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E25.8(b) The Langmuir isotherm is 

Kp 8 
8 = I + Kp so P = K(l - 8) 

(a) o.2o I I p = = 0 32 kPa 
(0.777 kPa I) x (I - 0.20) . 

(b) o.75 I I 
p = (0.777 kPa 1) x (I- 0.75) = 

3
'
9 

kPa 

E25.9(b) The Langmuir isotherm is 

8 = __!!:_ 
I +Kp 

We are looking for(}, so we must first find K or mmon 

8 
K= --,.-""' 

p(l - 8) 
m/mmon 

p(l - m/mmon) 

Setting this expression at one pressure equal to that at another pressure allows solution for lllmon 

111]/lllmon 1112./lllmon Pl(lllmon-ml) 
-::-'-'----":'c:..._---:- = so 
Pl(l-ml/lllmon) P2(1-mz/lllmon) m1 

pz (mmon - mz) 

mz 
(36.0 - 4.0) kPa 

(36.0(0.63 - 4.0(0.21) kPa mg 1 = 
0

'
84 

mg 

So 8, = 0.63/0.84 =I 0.751 and 8, = 0.21/0.84 =I 0.251 

E25.10(b) The mean lifetime of a chemisorbed molecule is comparable to its half-life 

1112 = ro exp (%~) 

(a) At400K: 
, ( 20xi03Jmol- 1 ) 

1112 = (0.12 X 10-'-s)exp 
(8.3!45JK 1mol 1) x (400K) 

= 1'4-. 9_x_I_O __ ::-11 's I 

At 800K: 12 ( 20 x !03 Jmol- 1 ) 
1112 = (O.I 2 

X w- s)exp (8.3!45JK- 1mol 1) X (SOOK) 

=12.4x w-''sl 

(b) At 400K: 1t2=(0.12x!0-1 s)exp 2 ( 200xi03Jmol- 1 ) 
I (8.3145JK- 1mol 1) x (400K) 

= 'l1-.6-x_!_01-3-,s I 

At 800K: 2 ( 200xi03Jmol-
1 

) 
1112 = (O.I 2 

X w-t s)exp (8.3145JK- 1mol 1) X (SOOK) 

=~ 
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E25.11 (b) The Langmuir isotherm is 

Kp 8 
8 = 1 + Kp so P = K(l - 8) 

For constant fractional adsorption 

Kl 
pK =constant so PtKt = pzK2 and P2 = Pt K

2 

(
-!:>,0H

9
) K 1 (-!:>,0H

9 

( 1 1 )) But K ex: exp so - = exp - - -
RT K2 R T1 Tz 

P2 =PI exp (-t>,dHe (~- ~)) 
R T1 Tz 

((
-12.2 x I03 Jmol- 1

) 
= (8.86 kPa) X exp I I 

8.3145JK mol 
x (-

1
- - -'-)) = 16.50 kPa I 

298K 318K 

E25.12(b) The Langmuir isothenn would be 

(a) 8 = __!Y!_ 
I +Kp 

(b) 

(c) 

(Kp) 112 

8 = "'t-'+-'c'-'K""p"l l"f' 

(Kp) 1/3 
8 = "'1-'+-'c'-'K""p J"1"1' 

A plot of 8 versus p at low pressures (where the denominator is approximately I) would show 

progressively weaker dependence on p for dissociation into two or three fragments. 

E25.13(b) The Langmuir isotherm is 

Kp 8 
8 = I + Kp so P = K(l - 8) 

For constant fractional adsorption 

pK =constant so Pt Kt = p2K2 

(
-t>,dH

9
) 

But K rx exp RT so 

9 ( I I )-I PI and t>,dH = R - - - In-, 
T1 Tz P2 

( 
I 1 )-I 

!:>,dH 9 = (8.3145JK-I mol-l) X T80i(- 24oK X (
I 350kPa ) 
n 1.02 x J03 kPa 

= -6.40 x 104 J mol- 1 = l-6.40kJ mol- 1 I 
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E25.14(b) The time required for a given quantity of gas to desorb is related to the activation energy for desorption by 

so :!. = exp (Ed (_!_ - _!_)) 
12 R Tt Tz 

( 
I I )-I It 

and Ed = R - - - In -
Tt T, tz 

( 
I I )-I ( 1856s) Ed=(8.3145JK- 1mol- 1)x ----- x ln--

873K 1012K 8.44s 

=12.85 x I05Jmol- 1 j 

(a) The same desorption at 298 K would take 

((
2.85xi0

5
Jmol-

1
) ( I I )) I I 

t = (1856 s) x exp 8.3145 J K I mol t x 298 K - 873 K = 1.48 x 1036 s 

(b) The same desorption at 1500 K would take 

8 (( 
2.85 x 105 Jmol-

1
) ( I I )) t = ( .44s) x ex x ---- ---

p 8.3145 J K-1 mol 1 1500 K 1012 K 

= jL38 x 10-4 s j 

E25.15(b) Disregarding signs, the electric field is the gradient of the electrical potential 

dt>rp <'></> " " 0.12Cm-
2 

1 s tl 
e=fu""d=-;=e,eo=(48)x(8.854xl0 12J tc'm 1)= 2·8 xiO vm-

E25.16(b) In the high overpotentiallimit 

j =joe<l-a)/'1 so ~ = e<l-a)/(IJ 1-rl2) 

h 
where 

F I 
f = -RT = "'275 .""69=-m-v"' 

The overpotential 112 is 

I h (25.69mV) ( 72mAcm-
2 

) 
ryz =ryt + In-= 105mY+ x In f(l- a) j1 I- 0.42 17.0mAcm-2 

= '116--=7-m v'l 

E25.17(b) In the high overpotentiallimit 

j =)oe<I-a)frJ so )o =)e(a-llftl 

jo = 07_0mAcm-2) x e{(0.42-IJx(I05mVJ/125.69mVJI = ji.GmAcm-'1 

E25.18(b) In the high overpotentiallimit 

j =)oe(l-a)/fl so fJ_ = e(l-a)/('71-'12) and h =)Je(l-a)/(112-IJI). 

h 



PROCESSES AT SOLID SURFACES 483 

So the current density at 0.60 V 

h = ( 1_22 rnA cm-2) x el(l-o.so) x co.6ov-o.sovJ;co.ms69VJI = js.s rnA cm-2j 

Note: the exercise says the data refer to the same material and at the same temperature as the previous 
Exercise (25.18(a)), yet the results for the current density at the same overpotential differ by a factor of 
over 5! 

E25.19(b) (a) The Butler-Volmer equation gives 

j =)o(e(l-a)/'1 _ e-a/'1) 

= (2.5 X w-3 Acm-2) X (ell-0.58)x(0.30V)/(0.02569V)J- e-1(0.58)x(0.30V)f0.02569V)J) 

= I 0.34 A em -zl 
(b) According to the Tafel equation 

j =)oe(l-al/'1 

= (2.5 x 10-3 Acm-')ei(I-0.58)x(0.30V)/(0.02569V)J =I 0.34Acm-'l 

The validity of the Tafel equation improves as the overpotential increases. 

E25.20(b) The limiting current density is 

zFDc 
)tim= -J-

but the diffusivity is related to the ionic conductivity (Chapter 21) 

ART 
D=T2 z F 

. CA 
so }lim = O;J 

(1.5molm-3) x (10.60 X l0-3Sm2 mol-l) X (0.02569V) 

hm = (0.32 x 10 3m) x (+1) 

E25.21(b) Fort he iron electrode£"= -0.44V (Table7.2) and the Nernstequation forthiselectrode(section 7. 7a) is 

,RT(l) 
E = E - vF In [Fe'+] v = 2 

Since the hydrogen overpotential is 0.60 V evolution of H2 will begin when the potential of the Fe 
electrode reaches -0.60 V. Thus 

-0.60V = -0.44V + 0.02~ 69
V ln[Fe2+] 
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COMMENT. Essentially all Fe2+ has been removed by deposition before evolution of H2 begins 

E25.22(b) The zerowcurrent potential of the electrode is given by the Nernst equation 

a RT " I a (Fe2+) I a (Fe2+) 
E = E - - In Q = E - - In ( 3 ) = 0. 77 Y - - In ( l+) 

vF f a Fe + f a Fe 

The Butler-Volmer equation gives 

where 1'/ is the overpotential, defined as the working potential E' minus the zero-current potential£. 

, I a (Fe2+) , I 
17 = E - 0.77 V +-In ( 3 ) = E -0.77 V +-In r, 

f aFe+ f 

where r is the ratio of activities; so 

j = )o(e(0.42JE' If ei(0.42) x( -0.77 V)/(0.025 69 V)J r0.42 

_ e< -0.58JE' If ei<-O.SSJ x( -0.77 VJ/(0.025 69 V)) ,.-o.ss) 

Specializing to the condition that the ions have equal activities yields 

j = (2.5 mAcm-2) X [(e<0.42lE'/J X (3.41 X w-6)- e<-O.S8)£'/J X (3.55 X 107)] 

E25.23(b) Note. The exercise did not supply values for )o or a. Assuming a= 0.5, only jfjo is calculated. From 
Exercise 25.22(b) 

j = )o(e(O.SO)E'// e -(0.50)£e If ,.o.so _ e< -0.50JE'/J e<O.SO)Ee If ,.-o.so) 

= 2josinh[!t E'- !J E" +! lnr], 

so, if the working potential is sel at 0.50 V, then 

j = 2jo sinh[!C0.91 Y)/(0.02569 V) + ! In r] 

j /jo = 2 sinh(8.48 +! lnr) 

A< r = 0.1: j fjo = 2sinh(8.48 +! ln0.10) = 1.5 x I03mAcm-2 = 11.5Acm-2 1 

At r = I : j fjo = 2sinh(8.48 + 0.0) = 4.8 x !03mAcm-2 = 14.8 Acm-2 1 

At,.= 10: j fjo = 2sinh(s.48 +tIn 10) = 1.5 X 104 mA cm-2 =115Acm-2 1 
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E25.24(b) The potential needed to sustain a given current depends on the activities of the reactants, but the over 
potential does not. The Butler-Volmer equation says 

This cannot be solved analytically for 17, but in thehigh-overpotentiallimit it reduces to the Tafel equation 

so 
I j 0.02569V 15mAcm-2 

q = In - = In ---,----,---;;------, 
(1- a)f io I- 0.75 4.0 x 10 2 mAcm 2 

This is a sufficiently large overpotential to justify use of the Tafel equation. 

E25.25(b) The number of singly charged particles transported per unit time per unit area at equilibrium is the 

exchange current density divided by the charge 

N=~ 
e 

The frequency f of participation per atom on an electrode is 

f=Na 

where a is the effective area of an atom on the electrode surface. 

For the Cu, H,IH+ electrode 

Jo 1.0 X I0-6 Acm-2 I I 
N =- = = 6.2 x 1012 s- 1cm-2 

e 1.602 x 10-19 C · . 

f = Na = (6.2 X 10 12s- 1 cm-2) X (260 X 10-IO cm)2 

=[4.2 x 10-3 ,-1 [ 

For the Pt 1Ce4+, Ce3+ electrode 

io 4.0 X I0-5Acm-2 I I 
N =- = = 2.5 x 10 14 s- 1 cm-2 

e 1.602 x 10 19C · . 

The frequency f of participation per atom on an electrode is 

f = Na = (2.5 X 10 14 ,-I cm-2) X (260 X I0- 10cm)2 =I 0.17 ,-I I 
E25.26(b) The resistance R of an ohmic resistor is 

potential '1 
R = '---

current - jA 

where A is the surface area of the electrode. The overpotential in the low overpotentiallimit is 

so 
I 

R=
fioA 
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0.02569V 
(a)R= =5.Ixi09 n=I5.IGnl 

(5.0 x I0-12 A em 2) x (l.Ocm2) 

(b) R = 0.025 69 V = [IQ]J 
· (2.5 x 10 3Acm-2) x (l.Ocm2) 

E25.27(b) No reduction of cations to metal will occur until the cathode potential is dropped below the zero-current 
potential for the reductionofNi2+ ( -0.23 Vat unit activity). Deposition ofNi will occur at an appreciable 

rate after the potential drops significantly below this value; however, the deposition of Fe will begin 
(albeit slowly) after the potential is brought below -0.44 V. If the goal is to deposit pure Ni, then the Ni 

will be deposited rather slowly at just above -0.44 V; then the Fe can be deposited rapidly by dropping 
the potential well below -0.44 V. 

E25.28{b) As was noted in Exercise 25.18(a), an overpotential of 0.6 V or so is necessary to obtain significant 

deposition or evolution, so H2 is evolved from acid solution at a potential of about -0.6 V. The reduction 
potential of Cd2+ is more positive than this ( -0.40 V), so Cd will deposit (albeit slowly) from Cd2+ 

before H2 evolution. 

E25.29(b) Zn can be deposited if the H+ discharge current is less than about I rnA cm-2 . The exchange current, 

according to the high negative overpotentiallimit, is 

j =joe-af'l 

At the standard potential for reduction of zn2+ ( -0.76 V) 

j = (0.79 rnA cm-2) x e-1(0.5) x <-0.76VJ/(0.02569VJJ = 2.1 x w• rnA cm-2 

I much too large to allow deposition I· (That is, H2 would begin being evolved, and fast, long before Zn 

began to deposit.) 

E25.30(b) Fe can be deposited if the H+ discharge current is less than about I rnA cm-2 . The exchange current, 
according to the high negative overpotentiallimit, is 

j =joe-cr.1'1 

At the standard potential for reduction of Fe2+ ( -0.44 V) 

}=(I X I0-6Acm-2) X e-1(0.5)x(-0.44V)j(0.02569V)j =5.2 X I0-3Acm-2 

I a bit too large to allow deposition I· (That is, H2 would begin being evolved at a moderate rate before 

Fe began to deposit.) 

E25.31 (b) The lead acid battery half-cells are 

Pb4+ + 2e- --+ Pb2+ 

and PbS04 + 2e- --+ Pb + SO~-

1.67 v 

- 0.36V, 
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for a total of E" = 12.03 V 1. Power is 

p =IV = (100 X 10-3 A) X (2.03 V) =I 0.203 w I 

if the cell were operating at its zero-current potential yet producing I OOmA. 

E25.32(b) Two electrons are lost in the corrosion of each zinc atom, so the number of zinc atoms lost is half the 

number of electrons which flow per unit time, i.e. half the current divided by the electron charge. The 
volume taken up by those zinc atoms is their number divided by number density; their number density 

is their mass density divided by molar mass times Avogadro's number. Dividing the volume of the 
corroded zinc over the surface from which they are corroded gives the linear corrosion rate; this affects 

the calculation by changing the current to the current density. So the rate of corrosion is 

P25.2 

jM (2.0Am-2) x (65.39 x I0-3 kgmol- 1) 
rate= -2e_p_N_A = ""2("I-.6::-:0c:2-x~I""0--;;;19:-:C::)-x--'-:(7""IC:3c:3-:-k-g-m---,3C')'--x---,-(6:=-.0:::2c:2c-x----'lc:-02"'3,-m-o-:l-=c1 ) 

= 9.5 x 10- 11 ms- 1 

= (9.5 x 10- 11 ms- 1) x (103mmm- 1) x (3600 x 24 x 365s y- 1) 

= 13.0 mmy- 1 I 

Solutions to problems 

Solutions to numerical problems 

Zw = (
2

rr ,:,T) 112 [25 .I a] 

=~------------------~p~~~~a------------~--~~ 
[(2rr) X (32.0) X (1.6605 x I0-27kg) x (1.381 x I0-23JK- 1)(300K)]

112 

= (2.69 x 1022 m-2s- 1) xp(Pa = (2.69 x 10 18 cm-2s- 1) xp(Pa 

(a) At 100 kPa, I Zw = 2.69 x 1023 cm-2 s-1 I 

(b) At I.OOOPa,lzw =2.69x I0 18 cm-2 s- 11 

The nearest neighbor in titanium is 291 pm, so the number of atoms per cm2 is approximately 1.4 x 1015 

(the precise value depends on the details of the packing, which is hcp, and the identity of the surface). 
The number of collisions per exposed atom is therefore Zw j ( 1.4 x 1015 em - 2). 

(a) When p = 100 kPa, Z,0 m = 12.0 x 108 s- 1 I 

(b) When p = 1.000 Pa, Z,0m = 12.0 X 103 s-1 I 
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P25.4 We follow Example 25.1 and draw up the following table (with pressures converted to Torr) 

p!forr 0.19 0.97 1.90 4.05 7.50 11.95 
(p(V) /(Torr cm-3) 4.52 5.95 8.60 12.6 18.3 25.4 

p(V is plotted against pin Figure 25.1. 
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p/Torr Figure 25.1 

The low-pressure points fall on a straight line with intercept 4.7 and slope 1.8. It follows that 1fV00 = 
1.8 Torr cm-3(Torr = 1.8 cm-3, or V00 = 0.57 cm3 and 1/ KV00 = 4.7 Torrcm-3 Therefore, 

K = 
3

1 
3 

=10.37Torr- 1 1=10.0028Pa- 1 l 
(4.7Torrcm ) x (0.57cm) 

COMMENT. It is unlikely that low-pressure data can be used to obtain an accurate value of the volume 

corresponding to complete coverage. See Problem 25.6 for adsorption data at higher pressures. 

P25.6 We assume that the data fit the Langmuir isotherm; to confirm this we plot pfV against p and expect a 

straight line [Example 25.1]. We draw up the following table 

p/atm 0.050 
p(V jcw-2atmcm-3) 4.1 

The data are plotted in Figure 25.2. 

0.100 
7.52 

0.150 
11.5 

0.200 
14.7 

They fit closely to a straight line with slope 0.720 dm-3 . Hence 

0.250 
17.9 
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pjatm Figure 25.2 

The number of H2 molecules corresponding to this volume is 

NH, = pVNA = (l.OOatm) x (1.39 x 10-
3 dm3

) x (6.02 x 10
23 mol- 1

)) = 
3

_
73 

x 
10

,9 

- RT (0.0821 dm3 atm K I mol 1) x (273 K) 

The area occupied is the number of molecules times the area per molecule. The area per molecule can 
be estimated from the density of the liquid 

[
V = volume of molecule = !!._] 

PNA 

( 
3M )'13 ( 3 x (2.02gmol- 1

) 

= rr 4rrpNA = rr 4rr x (0.0708gcm 3) x (6.02 x 1023 mol 

= 1.58 x I0- 15cm2 

Area occupied= (3.73 x 10 19 ) x ( 1.58 x 10- 15 cm2) = (5.9 x 104 cm2) = 15.9 m2 j 

COMMENT. The value for V= calculated here may be compared to the value obtained in Problem 25.4. The 

agreement is not good and illustrates the point that these kinds of calculations provide only rough value 

surface areas. 

P25.8 We assume that the Langmuir isotherm applies. 

e = ....!!E_ [25.4] and 
1 +Kp 

1 
1-8=----

1 +Kp 

For a strongly adsorbed species, Kp » I and I - 8 = 1/ Kp. Since the reaction rate is proportional 
to the pressure of ammonia and the fraction of sites left uncovered by the strongly adsorbed hydrogen 
product, we can write 
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To solve the rate law, we write 

from which it follows that, with p = PNH3 

-dp kp 
= 

dt PO-p 

2k,. 
k=-

3K 

This equation integrates as follows 

1~ (I -~) dp = k fo' dt 

We write F' = (poft) In (pfpo), G = (p- po)/t 

and obtain G = k + F' = poF 

Hence, a plot of G against F' should give a straight line with intercept k at F' = 0. Alternatively, the 
difference G- F' should be a constant, k. We draw up the following table (with pressures converted to 
Torr) 

tfs 0 30 60 100 160 200 250 

pfTorr 100 88 84 80 77 74 72 
G/(Torr s- 1) -0.40 -0.27 -0.20 -0.14 -0.13 -0.11 
F'/(Torrs- 1) -0.43 -0.29 -0.22 -0.16 -0.15 -0.13 
(G- F')/(Torrs- 1) 0.03 0.02 0.02 0.02 0.02 0.02 

Thus, the data fit the rate law, and we find I k = 0.02 Torr s- 1 I= I 0.05 kPa s- 1 I. 
Application of the van't Hoff equation [25.7] to adsorption equilibria yields 

Hence, a plot (Figure 25.3) of InK against 1fT should be a straight line with slope -tl,dH" fR. The 
transformed data and plot follow 

T/K 28.3 298 308 318 

w-"K 2.642 2.078 1.286 1.085 
1000 KIT 3.53 3.36 3.25 3.14 
InK 26.30 26.06 25.58 25.41 
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3.6 

Figure 25.3 

The plot is not the straightest of lines. Still, we can extract 

-t:.,dH" = -(8.3145Jmol- 1 K- 1
) x (2.41 x I03 K) 

=-20.0x I03 Jmol- 1 =I-20.IkJmol-1 1 

The Gibbs energy for absorption is 

-t.,dG" = -t:.,dH"- Tt:.,dS" = -20.1 kJmol- 1 - (298K) x (0.146kJmol- 1 K- 1) 

= 163.6kJ mol- 1 I 

For the Langmuir adsorption isotherm we must alter eqn 25.4 so that it describes adsorption from 
solution. This can be done with the transforms 

p ~ concentration, c 

V """'"'? amount adsorbed per gram adsorbent, s 

Langmuir isotherm and regression analysis: 

c c I 
-=-+
s S 00 Ks00 

= 0.163 g mmol- 1, standard deviation = 0.017 g mmol- 1 

Soo 

I 
-- = 35.6(mmoldm-3) x (gmmol- 1), 
Ks00 

standard deviation = 5.9(mmol dm-3) x (g mmol- 1) 

I R (Langmuir)= 0.9731 

0.163gmmol- 1 

K = -----=-,.-------,-
1 

=0.0046dm3 mmol- 1 

35.6(mmol dm 3) x (g mmol ) 



P25.14 

P25.16 

492 INSTRUCTOR'S SOLUTIONS MANUAL 

Freundlich isotherm and regression analysis: 

c, = 0.139, standard deviation = 0.012 

I 
- = 0.539, standard deviation = 0.003 
C2 

I R (Freundlich)= 0.999941 

Temkin isotherm and regression analysis: 

S = Ci Jn(C2C) 

c1 = 1.08, standard deviation= 0.14 

Q = 0.074, standard deviation = 0.023 

I R (Temkin) = 0.9590 I 
The correlation coefficients and standard deviations indicate that the I Freundlich isotherm I provides the 
best fit of the data. 

Deposition may occur when the potential falls to below£ and so simultaneous deposition will occur if 
the two potentials are the same; hence the relative activities are given by 

£"(Sn,Sn2+) + ~; lna(Sn2+) = £ 9 (Pb,Pb2+) + ~; lna(Pb2+) 

or In a(Sn'+) = (2F) I£"(Pb,Pb2+) -£"(Sn,Sn'+)} = (2) x (-0.126+0.136)V = 0.78 
a(Pb2+) RT 0.0257V 

That is, we require I a(Sn2+) "'2.2a(Pb2+) I 

, 2RT 
E = E -IR,- ---;-;clng(l) [25.64a] 

- (1/A]j" 
g = c:-:------'-'---":-'------::-;-,., 

[(I- (//Ajiim.Ll) X (1- (//A)l;m,R))]
112 

with )lim= cRT!.(zF 8 [25.57b] =a!. 

I I 
Rs = - = -- with Am =A+ + ).__ 

KA cAAm 

II 2RT 
Therefore, £' = E - -- - -- In g(l) 

cAAm zF 

(12/A'. . )' . h (/) _ -}LO}RO 
Wit g - 1/" 1/2 

[I- (//AaLAL+l] -[I- (//AaRAR+l] 

with "L = RTcL(ZLF8L and "R = RTcR(ZRF8R 
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For the cell Zn[ZnS04(aq)IICuS04(aq)ICu, 1=5cm, A=5cm2
, c(Mt)=c<Mt)= I moldm-3

, 

ZL = ZR = 2, AL+ = 107Scm2 mol-l, AR+ = 106Scm2 mol-l "'AL+• L = Aso'- = 
' 160 S cm-2mol- 1. Am ::::::: ( 107 + 160) S cm2mol- 1 = 267 S crn2 rnol- 1 for both electrolyte solutions. 

We takd "'0.25 mm [25.57b] andjco "'}Ro "' I rnA cm-2 We can also take 

E"(a "' I) = E"(Cu, Cu2+) - E" (Zn, zn2+) = [0.34- ( -0.76)] V = 1.10 V 

Scm 
~= =3]0 

· (I M) x (267 S em' mol 1) x (5 cm2) 

·. _ ·+ _I ((0.0257V) x (107Scm2 mol- 1
) x (IM)) _ 

5 
_2 _ 2 

Jhm-lnm-:zx 0_2SxiO'm -5. xlO SVcm 

= 5.5 x 10-2 A cm-2 

If follows that 

- ((115 X 10-
3 

A)
4

) 
E' IV = ( 1.10) - 3.75(1 I A) - (0.0257) In 

1 
_ 

3
_6(1 I A) 

- ( 1.6 X 10
9

(11A)
4

) 
= (1.10) - 3.75(1 I A) - (0.0257) In I _ 

3
_6(1 I A) 

This function is plotted in Figure 25.4. 
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The power is 

P=IE' 

- (1.6xi0
9

(11A)
4

) 
and so P IW = I. 10(1 I A) - 3.75(1 I A) 2 

- 0.0257(1 I A) In I _ 
3

_
6

(1 I A) 

This function is also plotted in Figure 25.4. Maximum power is delivered at about \87 rnA I and 0.46 V 
and is about 40 m W. 
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(a) 

(b) 

(c) 

Fe2+ + 2e- --> Fe v = 2; E" = -0.447 

" RT Eo = E - -In Q [7.29] 
vF 

" RT l = E - - -,- assuming YFe2+ = 1 
vF Fe-+ 

= -0.447 V - In 
25.693 x 10-3 V ( moldm-3 

) 

2 1.70 x J0-6 mol dm3 

I Eo = -0.618 V I 
~ = E' -Eo [25.39] 

rJ values are reported in the table below. 

. vF dllFo 2 (96485Cmol- 1
) di1Fo 

1 = A dr = 9.1 cm2 dt 

j =jo (e(l-a)fn _ e-afn) =joe-afn{ef' _I} 

= -jo[ef"- I] [25.40, 25.41] 

. -j 
}c = efn- 1 

jc values are reported in the following table 

1.47 702 84 
2.18 727 109 
3.11 752 134 
7.26 812 194 

j, =joe-aft• [25.40] 

lnj, = lnjo- o:j11 

0.0312 0.0324 
0.0462 0.0469 
0.0659 0.0663 
0.154 0.154 

Performing a linear regression analysis of the In jc versus 11 data. we find 

lnjo = 4.608, 

o:f = 0.0413mV, 

I R = 0.999941 

standard devation = 0.015 

standard devation = 0.000 II 

The correlation coefficient and the standard deviation indicate that the plot provides an excellent 
description of the data 

j 0 = e4·608 or ju = 0.00997tLAcm-' 

0.01413 
a= -

1
- = (O.Ol4l3mV- 1) x (26.693mV) 

1"' = o.3631 
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This problem differs somewhat from the simpler one-electron transfers considered in the text. In place 
of Ox + e- --+ Red we have here 

namely, a three-electron transfer. Therefore eqns 25.33a, 25.33b, and all subsequent equations including 
the Butler-Volmer equation [25.41] and the Tafel equations [25.44-25.46] need to be modified by 
including the factor z (in this case 3) in the equation. Thus, in the place of eqn 25.33b, we have 

and in place of eqns 25.45 and 25.47 

lnj = In jo + z(I - a)fry anode 

In( -j) = In jo - zafry cathode 

We draw up the following table 

0 

0.590 
1.438 
3.507 

-EfV ryfV ln(i/A m-2) 

0.388 0 
0.365 0.023 -0.5276 
0.350 0.038 0.3633 
0.335 0.053 1.255 

We now do a linear regression of In) against 71 with the following results (see Figure 25.5) 
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z(l- ex)f = 59.42 y-l, standard deviation= 0.0154 

ln)o = -1.894, standard deviation = 0.0006 

R = I (almost exact) 

Thus, although there are only three data points, the fit to the Tafel equation is almost exact. Solving for 
ex from z(l- ex)f = 59.42 y-l, we obtain 

59.42v- 1 (59.42v- 1
) 

ex = I - --::-:-- = I -
3 

x (0.025 262 V) 
3f 

= 0.4996 = I o.5o I 

which matches the usual value of a exactly. 

)o = e-'-894 =I 0.150 A m-2 1 

The cathodic current density is obtained from 

In(-),) = ln)o - zcxf~ ~ = 0.023 Vat- EjV = 0.365 

= -1.894- (3 X 0.4996 X 0.023)/(0.025 262) 

= -3.259 

- · - - 3·259- 0 0384-A - 2 
)c- e - . m 

-j, =I 0.0384 A m-2 1 

At large positive values of the overpotential the current density is anodic. 

· · [ (1-a)f•l -•f•l] 1 =Jo e - e [25.41] 

"')oe<l-a)f•l =)a [25.40] 

In)= ln)o + (I - ex)f~ 

Performing a linear regression analysis of lnj against ry, we find 

ln(io/(mA m-2)) = -10.826, standard deviation= 0.287 

(I- ex)J = 19.550V- 1, standard deviation= 0.355 

IR=0.999011 

jo = e- 10·826 rnA m-2 = \2.00 x w-5 rnA m-2 \ 

19.550V- 1 19.550V- 1 

ex = I - f = I - "'(0:-;.0:-=2::-5 6:;-;9"'3""V;:-) ' 1 

The linear regression explains 99.90 percent of the variation in a lnj against 1J plot and standard deviations 
are low. There are~ deviations from the Tafel equation/plot. 
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Solutions to theoretical problems 

A general change in the Gibbs function of a one-component system with a surface is 

dG = -s dT + v dp + y do" + Jl dn 

Let G = G(g) + G(a) and 11 = n(g) + n(a); then 

dG(g) = -S(g) dT + V(g) dp + Jl(g) dn(g) 

dG(a) = -S(a) dT + y da + Jl(a) dn(a) 

At equilibrium. Jl(a) = Jl(g) = Jl. At constant temperature. dG(a) = y da + Jl dn(a). Since dG is an 

exact differential, this expression integrates to 

G(a) = ya + Jlll(a) 

Therefore. dG(a) =a dy + y da + Jl dn(a) + n(a) dJl 

But since dG(a) = y d(a) + Jl dn(a) we conclude that a dy + n(a) dJl = 0 

Since dtL = RT d In p, this relation is equivalent to 

n(a) =-a dy =- (!!__) x (~) 
dJl RT d lnp 

Now express n(a) as an adsorbed volume using 

p.e.Va 
n(a) = RTe 

and express dy as a kind of chemical potential through 

RTe 
dJ.L1 

= -e-dy 
p 

evaluated at a standard temperature and pressure (TB and pe), then 

-(if) X ( ~) = V, 

Kp 
8=--. 

I +Kp 

8 v 
p = K(l-8) = K(V

00
- V) 

dp I V V00 

dV = K(V00 - V) + K(V00 - V) 2 = K(V00 - V) 2 

, (RT) dJl = - --;-
-RT 

V d In p = -- V dp 
pa 

= _ (RT) (K(V00
- V)) V ( V00 

) dV 
a V K(V00 - V) 2 

= _ (RT) ( V00 dV ) 
a V00 - V 



P25.28 

P25.30 

498 INSTRUCTOR'S SOLUTIONS MANUAL 

Therefore, we can adopt any of several forms, 

=jo ( 'lf + ~('1[) 2 (1- 2a) + · · ·] 

(j) = jo ( (17)/ +~(I - 2a)J2
(n

2) + · · ·] 

W !o2rrjw 
(ry) = 0, because - cos wr dt = 0 

2rr o 

Therefore,[ (j) = ~(I - 2a)f2jory6[ 

and U) = 0 when a = 1- For the mean current, 

(R7Voofa) dB= 
1-B 

[
2rr. . ] -;-ts the penod 

(R7Voo) -a- dIn (I -B) 

1 ((7.90 X 10-4 Acm-2
) X (1.0cm2

)) 2 
= 4 X (1-0.76) X 

2 
X (IOmV) 

(0.0257 V) 

j= (c:D) x (1-ef'l') [29.51; z= I]= h(l-eF•i'/RT) 

The form of this ex. pression is illustrated in Figure 25.6. 

For the anion current, the sign of rye is changed, and the current of anions approaches its limiting value 
as rye becomes more positive (Figure 25.6). 

Cmions 
...................... ····-··· 

j± .. 

t:::.t::LJ±:Li::±:;;\:±±J±:L±:J· . ··::J·' ry .. o ......................... ····' 
.... ~-

Anions Figure 25.6 



P25.32 

P25.34 

PROCESSES AT SOLID SURFACES 499 

Solutions to applications 

Equilibrium constants vary with temperature according to the van't Hoff equation [7.25] which can be 

written in the form 

or 

K1 = e -[u~adH.e./R)((l/Td-(lfT2 ))] 
K, 

K1 =ex [ !60x 10
3

Jmol-
1 
(-!- __ I_)] =1 404 1 

K2 p 8.3145JK I mol 1 673K 773K . 

As measured by the equilibrium constant of absorption, NO is about 40 times more strongly absorbed 

at 500 °C than at 400 °C. 

(a) {jwatcr = k(RH) 11" 

With a power law regression analysis we find 

I k = 0.22891, standard deviation = 0.0068 

lfn = 1.6182, standard deviation= 0.0093; In= 0.6180 I 

R = 0.999508 

A linear regression analysis may be performed by transforming the equation to the following form 

by taking the logarithm of the Freundlich type equation 

I 
In qwatcr = Ink+ - ln(RH) 

II 

Ink = -1.4746, standard deviation= 0.0068; I k = 0.22891 

~ = 1.6183, standard deviation= 0.0093; In= 0.6180 I 
II 

R = 0.999 508 

The two methods give exactly the same result because the software package for performing the 

power law regression performs the transformation to linear form for you. Both methods are actually 

performing a linear regression. 

The correlation coefficient indicates that 99.95 percent of the data variation is explained with the 

Freundlich type isotherm. The Freundlich fit hypothesis looks very good. 

(b) The Langmuir isotherm model describes adsorption sites that are independent and equivalent. This 

assumption seems to be valid for the VOC case in which molecules interact very weakly. However, 

water molecules interact much more strongly through forces such as hydrogen bonding and mul

tilayers may readily form at the lower temperatures. The intermolecular forces of water apparently 

cause adsorption sites to become nonequivalent and dependent. In this particular case the Freundlich 

type isotherm becomes the better description. 

(c) rvoc =I- qwfJter where rvoc = qvoc/qvoc.RH=O 

rvoc = I - k(RH) l/u 

I - 'VOC = k(RH) l/u 
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To determine the goodness-of-fit, k, and 11 we perform a power law regression fit of 1 - rvoc against 
RH. Results are 

I k = 0.52271. standard deviation = 0.0719 

~ = 1.3749, standard deviation = 0.0601; l11 = 0.72731 
II 

R = 0.99620 

Since 99.62 percent of the variation is explained by the regression, we conclude that the hypothesis 
that rvoc = I - qwa1er may be very useful. The values of Rand n differ significantly from those of 
part (a). It may be that water is adsorbing to some portions of the surface and VOC to others. 

(a) H, + !o,-+ H,O; D.,G0 = -237 kJ mol- 1 

Since v = 2, 

-(-237 kJ mol- 1) 
E"' = = I + 1.23 v I 

(2) X (96.48 kC mol 1) 

(b) CH, + 20, -+ CO,+ 2H,O 

D.,G 0 = 2D.rG"(H,O) + D.rG"(CO,)- D.rG"(CH,) 

= [(2) x (-237.1) + (-394.4) - (-50.7)] kJ moi- 1 = -817.9kJmoJ- 1 

As written, the reaction corresponds to the transfer of eight electrons. It follows that, for the species 
in their standard states, 

-( -817.9 kJ mol- 1) 
£

0
= =I+J.06VI 

(8) X (96.48 kC mol 1) 

lcorr = A]oefE14 [25.66] 

withE = -0.62- ( -0.94) V = 0.32 V [as in Problem 25.37] 

lcorr"" (0.25 X 10-6 A) X (e0.32/4x0.0257)) ""16/LA I 




